精英家教網 > 高中數學 > 題目詳情

【題目】知右焦點橢圓關于直線對稱的圖形過坐標原點.

1)求橢圓方程;

(2)過不垂直于的直線橢圓兩點,點的對稱點為證明直線的交點為.

【答案】(1);(2)證明見解析.

【解析】

試題分析:(1)根據題中條件運用基本量之間的關系求解;(2)借助題設條件運用直線和橢圓的位置關系建立坐標之間的關系,再用坐標之間的關系分析推證即可.

試題解析:(1)解:題意得橢圓焦點在上………………………………1

∵橢圓于直線對稱的圖形過坐標原點,∴,………………………………3

,解…………………………………………………………4

橢圓方程為.………………………………………………5

(2)證明:易知直線斜率必存在,設直線方程為

,

,.…………………………7

,

,……………………………………8

直線方程

,

直線定點右焦點為,∴直線的交點為.…………12

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】知橢圓中心在坐標原點,長軸在上,分別在其左、右焦點,橢圓上任意一點,且最大值為1,最小

(1)求橢圓方程;

(2)設橢圓右頂點,直線與橢圓交于兩點的任意一條直線,若,證明直線定點

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,求函數 的極值;

(2)若內為單調增函數,求實數的取值范圍;

(3)對于,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知極點與直角坐標系的原點重合,極軸與軸的正半軸重合,圓的極坐標方程是,直線的參數方程是為參數).

1)若, 為直線軸的交點, 是圓上一動點,求的最大值;

2)若直線被圓截得的弦長為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】知右焦點橢圓,且橢圓于直線對稱的圖形過坐標原點.

1)求橢圓方程;

(2)過不垂直于的直線橢圓,兩點,點的對稱點為,證明直線的交點為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電視臺舉行電視奧運知識大獎賽,比賽分初賽和決賽兩部分.為了增加節目的趣味性,

初賽采用選手選一題答一題的方式進行,每位選手最多有次選題答題的機會,選手累計答對題或答錯題即終止其初賽的比賽,答對題者直接進入決賽,答錯題者則被淘汰.已知選手甲答題的正確率為

(1) 求選手甲可進入決賽的概率;

(2) 設選手甲在初賽中答題的個數為,試寫出的分布列,并求的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等式:sin25°+cos235°+sin 5°cos 35°=

sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=,…,由此歸納出對任意角度θ都成立的一個等式,并予以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,其中,曲線在點處的切線與軸相交于點.

(1)確定的值;

(2)求函數的單調區間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解大學生觀看浙江衛視綜藝節目“奔跑吧兄弟”是否與性別有關,一所大學心理學教師從該校學生中隨機抽取了50人進行問卷調查,得到了如下的列聯表:

喜歡看“奔跑吧兄弟”

不喜歡看“奔跑吧兄弟”

合計

女生

5

男生

10

合計

50

若該教師采用分層抽樣的方法從50份問卷調查中繼續抽查了10份進行重點分析,知道其中喜歡看“奔跑吧兄弟”的有6人.

(1)請將上面的列聯表補充完整;

(2)是否有的把握認為喜歡看“奔跑吧兄弟”節目與性別有關?說明你的理由;

(3)已知喜歡看“奔跑吧兄弟”的10位男生中,還喜歡看新聞,還喜歡看動畫片,還喜歡看韓劇,現再從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調查,求不全被選中的概率.

下面的臨界值表供參考:

P(χ2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视