【題目】十九世紀末,法國學者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內任意選一條弦,這條弦的弦長長于這個圓的內接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”、“隨機端點”、“隨機中點”三個合理的求解方法,但結果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎的嚴格化.已知“隨機端點”的方法如下:設A為圓O上一個定點,在圓周上隨機取一點B,連接AB,所得弦長AB大于圓O的內接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】為了提高學生的身體素質,某校高一、高二兩個年級共336名學生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數據(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設某學生跳繩個/分鐘,踢毽
個/分鐘.當
,且
時,稱該學生為“運動達人”.
①從高二年級的學生中任選一人,試估計該學生為“運動達人”的概率;
②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為“運動達人”的人數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以原點為圓心,橢圓
的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設為橢圓右頂點,過橢圓
的右焦點的直線
與橢圓
交于
,
兩點(異于
),直線
,
分別交直線
于
,
兩點. 求證:
,
兩點的縱坐標之積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非零實數,
,
不全相等,則下列說法正確的個數是( )
(1)如果,
,
成等差數列,則
,
,
能構成等差數列
(2)如果,
,
成等差數列,則
,
,
不可能構成等比數列
(3)如果,
,
成等比數列,則
,
,
能構成等比數列
(4)如果,
,
成等比數列,則
,
,
不可能構成等差數列
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某企業生產的某種產品中抽取100件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:
(1)求這100件產品質量指標值的樣本平均數和樣本方差
(同一組的數據用該組區間的中點值作為代表);
(2)由直方圖可以認為,這種產品的質量指標值服從正態分布
,其中
近似為樣本平均數
,
近似為樣本方差
。
(i)若某用戶從該企業購買了10件這種產品,記表示這10件產品中質量指標值位于(187.4,225.2)的產品件數,求
;
(ii)一天內抽取的產品中,若出現了質量指標值在之外的產品,就認為這一天的生產過程中可能出現了異常情況,需對當天的生產過程進行檢查下。下面的莖葉圖是檢驗員在一天內抽取的15個產品的質量指標值,根據近似值判斷是否需要對當天的生產過程進行檢查。
附:,
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,已知直線l1的參數方程為(t為參數),直線l2的參數方程為
(t為參數),其中α∈(0,
),以原點O為點x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線C的極坐標方程為ρ﹣2sinθ=0.
(1)寫出直線l1的極坐標方程和曲線C的直角坐標方程;
(2)設直線l1,l2分別與曲線C交于點A,B(非坐標原點)求|AB|的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com