【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統計成績后得到如下
列聯表:
分數不少于120分 | 分數不足120分 | 合計 | |
線上學習時間不少于5小時 | 4 | 19 | |
線上學習時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;
(2)在上述樣本中從分數不少于120分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于5小時和線上學習時間不足5小時的學生共5名,若在這5名學生中隨機抽取2人,求至少1人每周線上學習時間不足5小時的概率.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中
)
【答案】(1)見解析,有(2)
【解析】
(1)利用題中數據補全列聯表,利用公式代入數據,結合臨界值判斷,即得解;
(2)依題意,抽到線上學習時間不少于5小時的學生人,計算所有基本事件數和滿足條件的基本事件個數,由古典概型的計算公式,即得解
解:(1)
分數不少于120分 | 分數不足120分 | 合計 | |
線上學習時間不少于5小時 | 15 | 4 | 19 |
線上學習時間不足5小時 | 10 | 16 | 26 |
合計 | 25 | 20 | 45 |
有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”
(2)依題意,抽到線上學習時間不少于5小時的學生人,設為
,
,
,線上學習時間不足
5小時的學生2人,設為,
所有基本事件有:
,
,
,
,
,
,
,
,
,
共10種
至少1人每周線上學習時間不足5小時包括:,
,
,
,
,
,
共7種
故至少1人每周線上學習時間不足5小時的概率為(或0.7)
科目:高中數學 來源: 題型:
【題目】年,某省將實施新高考,
年秋季入學的高一學生是新高考首批考生,新高考不再分文理科,采用
模式,其中語文、數學、外語三科為必考科目,滿分各
分,另外,考生還要依據想考取的高校及專業的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物
門科目中自選
門參加考試(
選
),每科目滿分
分.為了應對新高考,某高中從高一年級
名學生(其中男生
人,女生
人)中,采用分層抽樣的方法從中抽取n名學生進行調查.
(1)已知抽取的n名學生中含女生人,求n的值及抽取到的男生人數;
(2)學校計劃在高一上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下面表格是根據調查結果得到的
列聯表,請將下面的列聯表補充完整,并判斷是否有
的把握認為選擇科目與性別有關?說明你的理由;
選擇“物理” | 選擇“歷史” | 總計 | |
男生 | 10 | ||
女生 | 30 | ||
總計 |
(3)在抽取到的名女生中,在(2)的條件下,按選擇的科目進行分層抽樣,抽出
名女生,了解女生對“歷史”的選課意向情況,在這
名女生中再抽取
人,求這
人中選擇“歷史”的人數為
人的概率.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年7月1日迎來了我國建黨98周年,6名老黨員在這天相約來到革命圣地之一的西柏坡.6名老黨員中有3名黨員當年在同一個班,他們站成一排拍照留念時,要求同班的3名黨員站在一起,且滿足條件的每種排法都要拍一張照片,若將照片洗出來,每張照片0.5元(不含過塑費),且有一半的照片需要過塑,每張過塑費為0.75元.若將這些照片平均分給每名老黨員(過塑的照片也要平均分),則每名老黨員需要支付的照片費為( )
A.20.5B.21元C.21.5元D.22元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某度假酒店為了解會員對酒店的滿意度,從中抽取50名會員進行調查,把會員對酒店的“住宿滿意度”與“餐飲滿意度”都分為五個評分標準:1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統計結果如下表(住宿滿意度為,餐飲滿意度為
)
(1)求“住宿滿意度”分數的平均數;
(2)求“住宿滿意度”為3分時的5個“餐飲滿意度”人數的方差;
(3)為提高對酒店的滿意度,現從且
的會員中隨機抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】垃圾分類是對垃圾進行有效處置的一種科學管理方法,為了了解居民對垃圾分類的知曉率和參與率,引導居民積極行動,科學地進行垃圾分類,某小區隨機抽取年齡在區間[25,85]上的50人進行調研,統計出年齡頻數分布及了解垃圾分類的人數如表:
(1)填寫下面2x2列聯表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為以65歲為分界點居民對了解垃圾分類的有關知識有差異;
(2)若對年齡在[45,55),[25,35)的被調研人中各隨機選取2人進行深入調研,記選中的4人中不了解垃圾分類的人數為X,求隨機變量X的分布列和數學期望.
參考公式和數據K2,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一場突如其來的新冠肺炎疫情在全國蔓延,在黨中央的堅強領導和統一指揮下,全國人民眾志成城、團結一心,共抗疫情。每天測量體溫也就成為了所有人的一項責任,一般認為成年人腋下溫度(單位:℃)平均在36℃~37℃之間即為正常體溫,超過37.1℃即為發熱。發熱狀態下,不同體溫可分成以下三種發熱類型:低熱:
;高熱:
;超高熱(有生命危險):
.
某位患者因發熱,雖排除肺炎,但也于12日至26日住院治療. 醫生根據病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進行消炎退熱. 住院期間,患者每天上午8:00服藥,護士每天下午16:00為患者測量腋下體溫記錄如下:
抗生素使用情況 | 沒有使用 | 使用“抗生素A”治療 | 使用“抗生素B”治療 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
體溫(℃) | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情況 | 使用“抗生素C”治療 | 沒有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
體溫(℃) | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(1)請你計算住院期間該患者體溫不低于39℃的各天體溫平均值;
(2)在18日—22日期間,醫生會隨機選取3天在測量體溫的同時為該患者進行某一特殊項目“項目”的檢查,求至少兩天在高熱體溫下做“
項目”檢查的概率;
(3)抗生素治療一般在服藥后2-8個小時就能出現血液濃度的高峰,開始殺滅細菌,達到消炎退熱效果.假設三種抗生素治療效果相互獨立,請依據表中數據,判斷哪種抗生素治療效果最佳,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面BB1C1C為菱形,.
(1)求證:B1C⊥AB;
(2)若∠CBB1=60°,AC=BC,且點A在側面BB1C1C上的投影為點O,求二面角B﹣AA1﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型科學競技真人秀節目挑選選手的方式為:不但要對選手的空間感知、照相式記憶能力進行考核,而且要讓選手經過名校最權威的腦力測試,120分以上才有機會入圍.某重點高校準備調查腦力測試成績是否與性別有關,在該高校隨機抽取男、女學生各100名,然后對這200名學生進行腦力測試.規定:分數不小于120分為“入圍學生”,分數小于120分為“未入圍學生”.已知男生入圍24人,女生未入圍80人.
(1)根據題意,填寫下面的2×2列聯表,并根據列聯表判斷是否有95%以上的把握認為腦力測試后是否為“入圍學生”與性別有關;
性別 | 入圍人數 | 未入圍人數 | 總計 |
男生 | |||
女生 | |||
總計 |
(2)用分層抽樣的方法從“入圍學生”中隨機抽取11名學生,求這11名學生中男、女生人數;若抽取的女生的腦力測試分數各不相同(每個人的分數都是整數),分別求這11名學生中女生測試分數平均分的最小值.
附:,其中
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com