精英家教網 > 高中數學 > 題目詳情

【題目】針對某新型病毒,某科研機構已研發出甲乙兩種疫苗,為比較兩種疫苗的效果,選取100名志愿者,將他們隨機分成兩組,每組50人.第一組志愿者注射甲種疫苗,第二組志愿者注射乙種疫苗,經過一段時間后,對這100名志愿者進行該新型病毒抗體檢測,發現有的志愿者未產生該新型病毒抗體,在未產生該新型病毒抗體的志愿者中,注射甲種疫苗的志愿者占.

產生抗體

未產生抗體

合計

合計

1)根據題中數據,完成列聯表;

2)根據(1)中的列聯表,判斷能否有的把握認為甲乙兩種疫苗的效果有差異.

參考公式:,其中.

參考數據:

【答案】1)列聯表答案見解析.(2)有的把握認為甲乙兩種疫苗的效果有差異.

【解析】

1)根據題目所給條件,計算并填寫列聯表.

2)計算出的值,由此判斷有的把握認為甲乙兩種疫苗的效果有差異.

1)由題意可得未產生該新型病毒抗體的志愿者的人數為,

則注射甲種疫苗的志愿者中未產生抗體的人數為,產生抗體的人數為;

注射乙種疫苗的志愿者中未產生抗體的人數為,產生抗體的人數為.

產生抗體

未產生抗體

合計

48

2

50

42

8

50

合計

90

10

100

2

因為,所以有的把握認為甲乙兩種疫苗的效果有差異.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,曲線C的參數方程為t為參數).以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos.

1)求曲線C和直線l的直角坐標方程;

2)若直線l交曲線CA,B兩點,交x軸于點P,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年下半年以來,各地區陸續出臺了“垃圾分類”的相關管理條例,實行“垃圾分類”能最大限度地減少垃圾處置量,實現垃圾資源利用,改善生存環境質量.某部門在某小區年齡處于區間內的人中隨機抽取人進行了“垃圾分類”相關知識掌握和實施情況的調查,并把達到“垃圾分類”標準的人稱為“環保族”,得到圖各年齡段人數的頻率分布直方圖和表中統計數據.

1)求的值;

2)根據頻率分布直方圖,估計這人年齡的平均值(同一組數據用該組區間的中點值代替,結果保留整數);

3)從年齡段在的“環保族”中采用分層抽樣的方法抽取9人進行專訪,并在這9人中選取2人作為記錄員,求選取的2名記錄員中至少有一人年齡在區間中的概率.

組數

分組

“環保族”人數

占本組頻率

第一組

45

0.75

第二組

25

第三組

0.5

第四組

3

0.2

第五組

3

0.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構成的折線,稱為“一次構造”;用同樣的方法把每條小線段重復上述步驟,得到16條更小的線段構成的折線,稱為“二次構造”,…,如此進行“次構造”,就可以得到一條科赫曲線.若要在構造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構造的次數是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某小區有一塊矩形地塊,其中,,單位:百米.已知是一個游泳池,計劃在地塊內修一條與池邊相切于點的直路(寬度不計),交線段于點,交線段于點.現以點為坐標原點,以線段所在直線為軸,建立平面直角坐標系,若池邊滿足函數的圖象,若點軸距離記為.

1)當時,求直路所在的直線方程;

2)當為何值時,地塊在直路不含泳池那側的面積取到最大,最大值時多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學生考試中答對但得不了滿分的原因多為答題不規范,具體表現為:解題結果正確,無明顯推理錯誤,但語言不規范、缺少必要文字說明、卷面字跡不清、得分要點缺失等,記此類解答為類解答”.為評估此類解答導致的失分情況,某市教研室做了一項試驗:從某次考試的數學試卷中隨機抽取若干屬于類解答的題目,掃描后由近百名數學老師集體評閱,統計發現,滿分12分的題,閱卷老師所評分數及各分數所占比例大約如下表:

教師評分(滿分12分)

11

10

9

各分數所占比例

某次數學考試試卷評閱采用雙評+仲裁的方式,規則如下:兩名老師獨立評分,稱為一評和二評,當兩者所評分數之差的絕對值小于等于1分時,取兩者平均分為該題得分;當兩者所評分數之差的絕對值大于1分時,再由第三位老師評分,稱之為仲裁,取仲裁分數和一、二評中與之接近的分數的平均分為該題得分;當一、二評分數和仲裁分數差值的絕對值相同時,取仲裁分數和前兩評中較高的分數的平均分為該題得分.(假設本次考試閱卷老師對滿分為12分的題目中的類解答所評分數及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).

1)本次數學考試中甲同學某題(滿分12分)的解答屬于類解答,求甲同學此題得分的分布列及數學期望;

2)本次數學考試有6個解答題,每題滿分均為12分,同學乙6個題的解答均為類解答,記該同學6個題中得分為的題目個數為,,,計算事件的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖數據如圖.根據莖葉圖,下列描述正確的是(

A.甲種樹苗的中位數大于乙種樹苗的中位數,且甲種樹苗比乙種樹苗長得整齊

B.甲種樹苗的中位數大于乙種樹苗的中位數,但乙種樹苗比甲種樹苗長得整齊

C.乙種樹苗的中位數大于甲種樹苗的中位數,且乙種樹苗比甲種樹苗長得整齊

D.乙種樹苗的中位數大于甲種樹苗的中位數,但甲種樹苗比乙種樹苗長得整齊

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著經濟的發展和人民生活水平的提高,以及城市垃圾分類收集的實施和推廣,我國居民生活垃圾的平均熱值逐年.上升,垃圾焚燒發電的噸上網電量(單位:千瓦時/噸)顯著增加.下表為某垃圾焚燒發電廠最近五個月的生產數據.

月份代碼

噸上網電量

若從該發電廠這五個月的生產數據(噸上網電量)中任選兩個,求其中至少有一個生產數據超過的概率;

通過散點圖(如圖)可以發現,變量之間的關系可以用函數(其中為自然對數的底數)來擬合,求常數的值.

參考公式:對于一組數據,,,其回歸直線的斜率和截距的最小二乘估計公式分別為,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費和年銷售量)數據作了初步處理,得到下面的散點圖及一些統計量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中,

1)根據散點圖判斷,哪一個適宜作為年銷售量y關于年宣傳費x的回歸方類型?給出判斷即可,不必說明理由

2)根據(1)的判斷結果及表中數據,建立y關于x的回歸方程;

3)已知這種產品的年利潤zxy的關系為根據(2)的結果回答下列問題:

①年宣傳費時,年銷售量及年利潤的預報值是多少?

②年宣傳費x為何值時,年利潤的預報值最大?

附:對于一組數據,其回歸線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视