精英家教網 > 高中數學 > 題目詳情

某廠生產產品x件的總成本(萬元),已知產品單價P(萬元)與產品件數x滿足:,生產100件這樣的產品單價為50萬元,產量定為多少件時總利潤最大?

25

解析試題分析:利用100件產品單價50萬求出常量k,確定出p關于x的解析式,利潤=單價-成本.總利潤l(x)=p-c.求出l的導數,令導數=0時,函數有最值求出可得..
試題解析:解:由題意知有:502,解得:k=25×104,
∴P==;
∴總利潤L(x)=x•-1200-x3=500-1200-x3,
∴L′(x)=250-x2;
令L′(x)=0則有:x=25(件)
∴當x=25件時,總利潤最大.
考點:1.利用導數求閉區間上函數的最值;2.根據實際問題選擇函數類型.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經過原點,求直線的方程及切點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的單調增區間;
(2)當時,求函數在區間上的最小值;
(3)記函數圖象為曲線,設點是曲線上不同的兩點,點為線段的中點,過點軸的垂線交曲線于點.試問:曲線在點處的切線是否平行于直線?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)設,求函數的圖像在處的切線方程;
(2)求證:對任意的恒成立;
(3)若,且,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)試判斷函數的單調性;  
(2)設,求上的最大值;
(3)試證明:對任意,不等式都成立(其中是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時都取得極值
(1)求的值與函數的單調區間
(2)若對,不等式恒成立,求的取值范圍 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中b≠0.
(1)當b>時,判斷函數在定義域上的單調性:
(2)求函數的極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)對于函數中的任意實數x,在上總存在實數,使得成立,求實數的取值范圍
(2)設函數,當在區間內變化時,
(1)求函數的取值范圍;
(2)若函數有零點,求實數m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(1)當時,求函數的圖象在點處的切線方程;
(2)如果對于任意,都有,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视