精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=|x|x+bx+c,給出下列4個命題:
①b=0,c>0時,方程f(x)=0只有一個實數根;
②c=0時,y=f(x)是奇函數;
③y=f(x)的圖象關于點(0,c)對稱;
④方程f(x)=0至多有2個不相等的實數根.
上述命題中的所有正確命題的序號是

【答案】①②③
【解析】解:①當b=0,c>0時,f(x)=|x|x+c= ,結合圖形知f(x)=0只有一個實數根,故①正確;②當c=0時,f(x)=|x|x+bx,有f(﹣x)=﹣f(x)=﹣|x|x﹣bx,故y=f(x)是奇函數,故②正確;③y=f(x)的圖象可由奇函數f(x)=|x|x+bx,向上或向下平移|c|而得到,y=f(x)的圖象與y軸交點為(0,c),故函數y=f(x)的圖象關于(0,c)對稱,故③正確;④當b=﹣5,c=6時,方程|x|x﹣5x+6=0有三個解﹣6、2、3,即三個零點,故④錯誤;所以答案是:①②③.
【考點精析】掌握命題的真假判斷與應用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓心在y軸上的圓C經過點A(1,2)和點B(0,3).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l在兩坐標軸上的截距相等,且被圓C截得的弦長為 ,求l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足an+1=2an+n﹣1,且a1=1.
(Ⅰ)求證:{an+n}為等比數列;
(Ⅱ)求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= 的定義域為(
A.(﹣∞,11)
B.(1,11]
C.(1,11)
D.(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(文)已知y=f(x)是偶函數,y=g(x)是奇函數,它們的定義域均為[﹣3,3],且它們在x∈[0,3]上的圖象如圖所示,則不等式 的解集是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x的不等式x2﹣ax﹣2>0的解集為{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)當m>﹣ 時,解關于x的不等式(mx+a)(x﹣b)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為120°的扇形廣場內(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點間距離為定長 米.

(1)當∠BAC=45°時,求觀光道BC段的長度;
(2)為提高觀光效果,應盡量增加觀光道路總長度,試確定圖中A、B兩點的位置,使觀光道路總長度達到最長?并求出總長度的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解關于x的不等式(a2﹣4)x2+4x﹣1>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列四個命題:
①已知M={(x,y)| =3},N={(x,y)|ax+2y+a=0}且M∩N=,則a=﹣6;
②已知點A(x1 , y1),B(x2 , y2),則以AB為直徑的圓的方程是(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0;
=1(a≠b)表示焦點在x軸上的橢圓;
④已知拋物線y2=2px(p>0)的焦點弦AB的兩端點坐標分別為A(x1 , y2),B(x2 , y2),則 =﹣4
其中的真命題是 . (把你認為是真命題的序號都填上)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视