【題目】如圖所示,已知⊙O的半徑是1,點C在直徑AB的延長線上,BC=1,點P是⊙O上半圓上的一個動點,以PC為邊作等邊三角形PCD,且點D與圓心分別在PC的兩側.
(1)若∠POB=θ,試將四邊形OPDC的面積y表示為關于θ的函數;
(2)求四邊形OPDC面積的最大值.
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸、y軸上的截距相等,求切線的方程;
(2)從圓C外一點P(x1 , y1)向圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使|PM|最小的點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數獨游戲越來越受人們喜愛,今年某地區科技館組織數獨比賽,該區甲、乙、丙、丁四所學校的學生積極參賽,參賽學生的人數如表所示:
中學 | 甲 | 乙 | 丙 | 丁 |
人數 | 30 | 40 | 20 | 10 |
為了解參賽學生的數獨水平,該科技館采用分層抽樣的方法從這四所中學的參賽學生中抽取30名參加問卷調查.
(Ⅰ)問甲、乙、丙、丁四所中學各抽取多少名學生?
(Ⅱ)從參加問卷調查的30名學生中隨機抽取2名,求這2名學生來自同一所中學的概率;
(Ⅲ)在參加問卷調查的30名學生中,從來自甲、丙兩所中學的學生中隨機抽取2名,用X表示抽得甲中學的學生人數,求X的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分別是SA、SC的中點.
(I)求證:平面ACD⊥平面BCD;
(II)求二面角S﹣BD﹣E的平面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數列{an}的前n項和.
(1)若數列{an}是首項為 ,公比為﹣
的等比數列,求數列{bn}的通項公式;
(2)若bn=n,a2=3,求證:數列{an}滿足an+an+2=2an+1 , 并寫出數列{an}的通項公式;
(3)在(2)的條件下,設cn= , 求證:數列{cn}中的任意一項總可以表示成該數列其他兩項之積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四邊形ABCD內接于圓O
(1)若AB=2,BC=6,CD=4,AC=8,求BD
(2)若AC=,BC=
+1,∠ADB=
,求AD2+DC2的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB).
(Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大;
(Ⅱ)已知向量 =(sinA,cosA),
=(cosB,sinB),求|3
﹣2
|的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com