【題目】“搜索指數”是網民通過搜索引擎,以每天搜索關鍵詞的次數為基礎所得到的統計指標.“搜索指數”越大,表示網民對該關鍵詞的搜索次數越多,對該關鍵詞相關的信息關注度也越高.下圖是2019年9月到2020年2月這半年中,某個關鍵詞的搜索指數變化的走勢圖.
根據該走勢圖,下列結論不正確的是( ).
A.這半年中,網民對該關鍵詞相關的信息關注度與時間具有比較明顯的線性相關性
B.2019年10月網民對該關鍵詞的搜索指數變化的走勢圖具有較好的對稱性,與正態曲線相近,故當月搜索指數的平均值約為29000
C.從網民對該關鍵詞的搜索指數來看,2019年10月的方差小于11月的方差
D.從網民對該關鍵詞的搜索指數來看,2019年12月的平均值大于2020年1月的平均值
科目:高中數學 來源: 題型:
【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為
則該三棱錐外接球的表面積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知四邊形AA1C1C為矩形,AA1=6,AB=AC=4,∠BAC=∠BAA1=60°,∠A1AC的角平分線AD交CC1于D.
(1)求證:平面BAD⊥平面AA1C1C;
(2)求二面角A﹣B1C1﹣A1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正四棱錐P﹣ABCD的底面邊長為2,側棱長為2,過點A作一個與側棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A,B的坐標分別是(,0),(
,0),動點M(x,y)滿足直線AM和BM的斜率之積為﹣3,記M的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+m與曲線E相交于P,Q兩點,若曲線E上存在點R,使得四邊形OPRQ為平行四邊形(其中O為坐標原點),求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在①,②
(
),③
(
)這三個條件中任選一個,補充在下面的問題中,若問題中的k存在,求出k的值;若k不存在,說明理由.已知數列
為等比數列,
,
,數列
的首項
,其前n項和為
,______,是否存在
,使得對任意
,
恒成立?
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全球抗擊新冠肺炎疫情期間,我國醫療物資生產企業加班加點生產口罩、防護服、消毒水等防疫物品,保障抗疫一線醫療物資供應,在國際社會上贏得一片贊譽.我國某口罩生產企業在加大生產的同時,狠抓質量管理,不定時抽查口罩質量,該企業質檢人員從所生產的口罩中隨機抽取了100個,將其質量指標值分成以下六組:,
,
,…,
,得到如下頻率分布直方圖.
(1)求出直方圖中的值;
(2)利用樣本估計總體的思想,估計該企業所生產的口罩的質量指標值的平均數和中位數(同一組中的數據用該組區間中點值作代表,中位數精確到0.01);
(3)現規定:質量指標值小于70的口罩為二等品,質量指標值不小于70的口罩為一等品.利用分層抽樣的方法從該企業所抽取的100個口罩中抽出5個口罩,并從中再隨機抽取2個作進一步的質量分析,試求這2個口罩中恰好有1個口罩為一等品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓周率π是數學中一個非常重要的數,歷史上許多中外數學家利用各種辦法對π進行了估算.現利用下列實驗我們也可對圓周率進行估算.假設某校共有學生N人,讓每人隨機寫出一對小于1的正實數a,b,再統計出a,b,1能構造銳角三角形的人數M,利用所學的有關知識,則可估計出π的值是( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com