【題目】已知函數,直線
與
的圖象的相鄰兩個交點的橫坐標分別是
和
,現有如下命題:
①該函數在上的值域是
;
②在上,當且僅當
時函數取最大值;
③該函數的最小正周期可以是;
④的圖象可能過原點.
其中的真命題有__________.(寫出所有真命題的序號)
【答案】④
【解析】當時,區間
沒有意義,故①錯誤;該函數在
上,當
時函數取最小值,故②錯誤;由周期公式
,得
,此時
,由
,計算得出
,不滿足
,可以知道該函數的最小正周期不可以是
,故③錯誤;由
,得
,即
時
的圖象過原點,故④正確.∴正確命題的序號是④,故答案為④.
【 方法點睛】本題主要通過對多個命題真假的判斷,主要綜合考查三角函數函數的圖象與性質,屬于難題.這種題型綜合性較強,也是高考的命題熱點,同學們往往因為某一處知識點掌握不好而導致“全盤皆輸”,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,對存在性問題可以用特值法進行排除,還要注意從簡單的自己已經掌握的知識點入手,然后集中精力突破較難的命題.
科目:高中數學 來源: 題型:
【題目】已知點A(1,﹣1),B(4,0),C(2,2),平面區域D是所有滿足 =
+μ
(1<λ≤a,1<μ≤b)的點P(x,y)組成的區域.若區域D的面積為8,則4a+b的最小值為 ( )
A.5
B.4
C.9
D.5+4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}為等差數列,且a5=14,a7=20,數列{bn}的前n項和為Sn , b1= 且3Sn=Sn﹣1+2(n≥2,n∈N).
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)若cn=anbn , n=1,2,3,…,Tn為數列{cn}的前n項和,Tn<m對n∈N*恒成立,求m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一(1)班全體男生的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據此解答如下問題:
(1)求該班全體男生的人數;
(2)求分數在之間的男生人數,并計算頻率公布直方圖中
之間的矩形的高;
(3)根據頻率分布直方圖,估計該班全體男生的數學平均成績(同一組中的數據用該組區間的中點值代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
不超過
尾/立方米時,
的值為
千克/年;當
時,
是
的一次函數,且當
時,
.
()當
時,求
關于
的函數的表達式.
()當養殖密度
為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖南)如下圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A,B,C,D都在同一個與水平面垂直的平面內,B,D為兩島上的兩座燈塔的塔頂。測量船于水面A處測得B點和D點的仰角分別為,
,于水面C處測得B點和D點的仰角均為
,AC=0.1km。
(Ⅰ)試探究圖中B,D間的距離與另外哪兩點間距離會相等?
(II)求B,D間的距離。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com