【題目】在發生公共衛生事件期間,有專業機構認為該事件在一段時間內沒有發生大規模群體感染的標志為“連續天,每天新增疑似病例不超過
人”.過去
日,甲、乙、丙、丁四地新增疑似病例數據信息如下,則一定符合該標志的是( )
甲地:總體平均數,且中位數為
;
乙地:總體平均數為,且標準差
;
丙地:總體平均數,且極差
;
丁地:眾數為,且極差
.
A.甲地B.乙地C.丙地D.丁地
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代數學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經驗方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差。現有圓心角為
,半徑等于4米的弧田.下列說法不正確的是( )
A. “弦”米,“矢”
米
B. 按照經驗公式計算所得弧田面積()平方米
C. 按照弓形的面積計算實際面積為()平方米
D. 按照經驗公式計算所得弧田面積比實際面積少算了大約0.9平方米(參考數據
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統計2018年上半年每個月的20日的晝夜溫差,
和患感冒的小朋友人數(
/人)的數據如下:
溫差 | ||||||
患感冒人數 | 8 | 11 | 14 | 20 | 23 | 26 |
其中,
,
.
(Ⅰ)請用相關系數加以說明是否可用線性回歸模型擬合與
的關系;
(Ⅱ)建立關于
的回歸方程(精確到
),預測當晝夜溫差升高
時患感冒的小朋友的人數會有什么變化?(人數精確到整數)
參考數據:.參考公式:相關系數:
,回歸直線方程是
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(其中
),
(其中
為自然對數的底數).
(1)若曲線在
處的切線與直線
垂直,求
的單調區間和極值;
(2)若對任意,總存在
使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)若函數在
上是增函數,求正數
的取值范圍;
(2)當時,設函數
的圖象與x軸的交點為
,
,曲線
在
,
兩點處的切線斜率分別為
,
,求證:
+
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知4名學生和2名教師站在一排照相,求:
(1)中間二個位置排教師,有多少種排法?
(2)首尾不排教師,有多少種排法?
(3)兩名教師不站在兩端,且必須相鄰,有多少種排法?
(4)兩名教師不能相鄰的排法有多少種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面幾種推理是合情推理的是( )
①由圓的性質類比出球的有關性質;
②由直角三角形、等腰三角形、等邊三角形內角和是歸納出所有三角形的內角和都是
;③由
,滿足
,
,推出
是奇函數;
④三角形內角和是,四邊形內角和是
,五邊形內角和是
,由此得凸多邊形內角和是
.
A. ①②B. ①③④C. ②④D. ①②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com