【題目】已知某智能手機制作完成之后還需要依次通過三道嚴格的審核程序,已知第一道審核、第二道審核、第三道審核通過的概率分別為 ,
,
,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.
(1)求審核過程中只進行兩道程序就停止審核的概率;
(2)現有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數為X,求X的分布列及數學期望.
【答案】
(1)解:記審核過程中只進行兩道程序就停止審核為事件A,
事件A發生的概率
(2)解:X的可能取值為0,1,2,3.
一部手機通過三道審核可以出廠的概率為 ,
,
,
,
.
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
數學期望
【解析】(1)記審核過程中只進行兩道程序就停止審核為事件A,利用相互獨立事件概率乘法公式能求出事件A發生的概率.(2)X的可能取值為0,1,2,3,一部手機通過三道審核可以出廠的概率為 ,分別求出相應的概率,由此能求出X的分布列和數學期望.
【考點精析】關于本題考查的離散型隨機變量及其分布列,需要了解在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知A(1,2,-1),B(2,0,2).
(1)在x軸上求一點P,使|PA|=|PB|;
(2)若xOz平面內的點M到點A的距離與到點B的距離相等,求點M的坐標滿足的條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某射擊隊有8名隊員,其中男隊員5名,女隊員3名,從中隨機選3名隊員參加射擊表演活動.
(1)求選出的3名隊員中有一名女隊員的概率;
(2)求選出的3名隊員中女隊員人數比男隊員人數多的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數據3,3,2,3,6,3,10,3,6,3,2.
①這組數據的眾數是3;
②這組數據的眾數與中位數的數值不相等;
③這組數據的中位數與平均數的數值相等;
④這組數據的平均數與眾數的值相等.
其中正確的結論的個數( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線x2=4y焦點為F,點A,B,C為該拋物線上不同的三點,且滿足 +
+
=
.
(1)求|FA|+|FB|+|FC|;
(2)若直線AB交y軸于點D(0,b),求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】觀察下列各式: C =40;
C +C
=41;
C +C
+C
=42;
C +C
+C
+C
=43;
…
照此規律,當n∈N*時,
C +C
+C
+…+C
= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校夏令營有3名男同學A、B、C和3名女同學X,Y,Z,其年級情況如下表,現從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同).
一年級 | 二年級 | 三年級 | |
男同學 | A | B | C |
女同學 | X | Y | Z |
(1)用表中字母列舉出所有可能的結果;
(2)設M為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件M發生的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com