【題目】設拋物線C1:y2=8x的準線與x軸交于點F1 , 焦點為F2 . 以F1 , F2為焦點,離心率為 的橢圓記為C2 . (Ⅰ)求橢圓C2的方程;
(Ⅱ)設N(0,﹣2),過點P(1,2)作直線l,交橢圓C2于異于N的A、B兩點.
(ⅰ)若直線NA、NB的斜率分別為k1、k2 , 證明:k1+k2為定值.
(ⅱ)以B為圓心,以BF2為半徑作⊙B,是否存在定⊙M,使得⊙B與⊙M恒相切?若存在,求出⊙M的方程,若不存在,請說明理由.
【答案】解:(Ⅰ)由已知F1(﹣2,0),F2(2,0). 令橢圓C2的方程為 ,焦距為2c,(c>0)
則 ,解之得
,
所以,橢圓C2的方程為 .
(Ⅱ)(ⅰ)證明:當直線l斜率不存在時,l:x=1,
由 得
或
,
不妨取 ,則
,
此時, ,
所以k1+k2=4.
當直線l斜率存在時,令l:y﹣2=k(x﹣1),
由 得(1+2k2)x2+(8k﹣4k2)x+2k2﹣8k=0,
由△=(8k﹣4k2)2﹣4(1+2k2)(2k2﹣8k)>0得k>0,或 .
令A(x1 , y1),B(x2 , y2),則 ,
,
所以, ,
所以, =
=
,
=
=
= =2k﹣(2k﹣4)=4,
綜上所述,k1+k2=4.
(ⅱ)存在定⊙M,使得⊙B與⊙M恒相切,⊙M的方程為(x﹣2)2+y2=32,圓心為左焦點F1 ,
由橢圓的定義知 ,
所以, ,
所以兩圓相切.
【解析】(Ⅰ)由題意,設橢圓的方程,根據橢圓的離心率公式及c=2,即可求得a和b的值,即可求得橢圓方程;(Ⅱ)(ⅰ)分類,當直線l斜率不存在時,求得A和B點坐標,即可求得k1+k2 , 當直線l斜率存在時,設直線l的方程,代入橢圓方程,利用韋達定理及直線的斜率公式,即可求得k1+k2=4;(ⅱ)定圓⊙M的方程為:(x﹣2)2+y2=32,求得圓心,由拋物線的性質,可求得 兩圓相內切.
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)=x2+|x﹣m|(m為實數)是偶函數,記a=f(log e),b=f(log3π),c=f(em)(e為自然對數的底數),則a,b,c的大小關系( )
A.a<b<c
B.a<c<b
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的離心率為
,四個頂點構成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點A作圓M的兩條切線分別與橢圓C相交于B,D兩點(不同于點A),直線AB,AD的斜率分別為k1 , k2 .
(1)求橢圓C的方程;
(2)當r變化時,①求k1k2的值;②試問直線BD是否過某個定點?若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 ,函數
. (Ⅰ)求函數f(x)的單調遞增區間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC三個內角A,B,C的對邊,若 ,a=2,求b+c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代有計算多項式值的秦九韶算法,如圖是實現該算法的程序框圖.執行該程序框圖,若輸入的x=3,n=3,輸入的a依次為由小到大順序排列的質數(從最小質數開始), 直到結束為止,則輸出的s=( )
A.9
B.27
C.32
D.103
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,動圓經過點M(0,t﹣2),N(0,t+2),P(﹣2,0).其中t∈R.
(1)求動圓圓心E的軌跡方程;
(2)過點P作直線l交軌跡E于不同的兩點A,B,直線OA與直線OB分別交直線x=2于兩點C,D,記△ACD與△BCD的面積分別為S1 , S2 . 求S1+S2的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,如果存在實數
使得
,那么稱
為
的線性函數.
(1)下面給出兩組函數,判斷是否分別為
的線性函數?并說明理由;
第一組:
第二組::
(2)設,線性函數為
.若等式
在
上有解,求實數
的取值范圍;
(3)設,取
.線性函數
圖像的最低點為
.若對于任意正實數
且
.試問是否存在最大的常數
,使
恒成立?如果存在,求出這個
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
(2)設f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x1)+f(x2)>﹣5.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com