【題目】某物流公司購買了一塊長AM=90米,寬AN=30米的矩形地塊AMPN,規劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路和停車場,要求頂點C在地塊對角線MN上,B、D分別在邊AM、AN上,假設AB長度為x米.若規劃建設的倉庫是高度與AB的長相同的長方體建筑,問AB長為多少時倉庫的庫容最大?(墻體及樓板所占空間忽略不計)
科目:高中數學 來源: 題型:
【題目】已知f(x)=x2-a|x-1|-1,a∈R.
(1)判斷并證明函數f(x)的奇偶性;
(2)若f(x)≥0對x∈[1,+∞)恒成立,求a的取值范圍;
(3)寫出f(x)在[-2,2]上的最大值g(a).(不需要解答過程)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足f(x)=f(2-x),且f(1)=6,f(3)=2.若不等式f(x)>2mx+1在[-1,3]恒成立,則實數m的取值范圍是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,有下列結論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫所有正確結論的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市每年春節前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環保研究所對近年春節前后每天的空氣污染情況調查研究后發現,每天空氣污染的指數.f(t),隨時刻t(時)變化的規律滿足表達式,其中a為空氣治理調節參數,且a∈(0,1).
(1)令,求x的取值范圍;
(2)若規定每天中f(t)的最大值作為當天的空氣污染指數,要使該市每天的空氣污染指數不超過5,試求調節參數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com