【題目】在平面直角坐標系xOy中,點F是橢圓C:1(a>b>0)的一個焦點,點D是橢圓上的一個動點,且|FD|∈[1,3].
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點P(﹣4,0)作直線交橢圓C于A,B兩點,求△AOB面積的最大值.
【答案】(Ⅰ):1;(Ⅱ)2
.
【解析】
(Ⅰ)由點是橢圓上的一個動點,且
可得:
可解得:
即可求得橢圓的標準方程;
(Ⅱ)設由題意設直線
的方程為
,聯立
,得,由韋達定理、點到直線距離公式等,結合已知條件能求出
面積的最大值.
(Ⅰ)由點D是橢圓上的一個動點,且|FD|∈[1,3]可得:a﹣c=1,a+c=3,a2=b2+c解得:a2=4,b2=3,
所以橢圓的標準方程:1;
(Ⅱ)顯然直線AB的斜率不為零,設直線AB的方程:x=my﹣4,A(x,y),B(x',y'),
聯立與橢圓的方程整理得:(4+3m2)y2﹣24my+36=0,
△=(﹣24m)2﹣436(4+3m2)>0,整理得m2>4,且y+y',yy'
,
∴|AB|12
O到直線AB的距離d,
所以S△AOB|AB|d=48
48
2
,
當且僅當,即
時等號成立,
所以△AOB面積的最大值:2.
科目:高中數學 來源: 題型:
【題目】某中學高三年級有學生500人,其中男生300人,女生200人。為了研究學生的數學成績是否與性別有關,采用分層抽樣的方法,從中抽取了100名學生,統計了他們期中考試的數學分數,然后按照性別分為男、女兩組,再將兩組的分數分成5組: 分別加以統計,得到如圖所示的頻率分布直方圖。
(I)從樣本分數小于110分的學生中隨機抽取2人,求兩人恰為一男一女的概率;
(II)若規定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?
附表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】成書于公元一世紀的我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,題目是:“今有池方一丈,點生其中央,出水一尺,引葭趕岸,適馬岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈(10尺),有棵蘆葦長在它的正中央,高出水面部分有1尺長,把蘆葦拉向岸邊,恰好碰到沿岸(池塘一邊的中點),則水深為__________尺,蘆葦長__________尺.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在傳染病學中,通常把從致病刺激物侵入機體或者對機體發生作用起,到機體出現反應或開始呈現該疾病對應的相關癥狀時止的這一階段稱為潛伏期. 一研究團隊統計了某地區1000名患者的相關信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數 |
(1)求這1000名患者的潛伏期的樣本平均數(同一組中的數據用該組區間的中點值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯表. 請將列聯表補充完整,并根據列聯表判斷是否有的把握認為潛伏期與患者年齡有關;
潛伏期 | 潛伏期 | 總計 | |
50歲以上(含50歲) | |||
50歲以下 | 55 | ||
總計 | 200 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區1名患者潛伏期超過6天發生的概率,每名患者的潛伏期是否超過6天相互獨立. 為了深入研究,該研究團隊隨機調查了名患者,其中潛伏期超過6天的人數最有可能(即概率最大)是多少?
附:
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A是圓O:x2+y2=4上一動點,過點A作AB⊥x軸,垂足為B,動點D滿足.
(1)求動點D的軌跡C的方程;
(2)垂直于x軸的直線M交軌跡C于M、N兩點,點P(3,0),直線PM與軌跡C的另一個交點為Q.問:直線NQ是否過一定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一片森林原來面積為,計劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當砍伐到面積的一半時,所用時間是10年,為保護生態環境,森林面積至少要保留原面積的
,已知到今年為止,森林剩余面積為原來的
.
(1)到今年為止,該森林已砍伐了多少年?
(2)今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校共有名學生,其中男生
人,為了解該校學生在學校的月消費情況,采取分層抽樣隨機抽取了
名學生進行調查,月消費金額分布在
之間.根據調查的結果繪制的學生在校月消費金額的頻率分布直方圖如圖所示:
將月消費金額不低于元的學生稱為“高消費群”.
(1)求的值,并估計該校學生月消費金額的平均數(同一組中的數據用該組區間的中點值作代表);
(2)現采用分層抽樣的方式從月消費金額落在,
內的兩組學生中抽取
人,再從這
人中隨機抽取
人,記被抽取的
名學生中屬于“高消費群”的學生人數為隨機變量
,求
的分布列及數學期望;
(3)若樣本中屬于“高消費群”的女生有人,完成下列
列聯表,并判斷是否有
的把握認為該校學生屬于“高消費群”與“性別”有關?
(參考公式:,其中
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com