【題目】設點O是平行四邊形ABCD兩條對角線的交點,給出下列向量組:
① 與
;
② 與
;
③ 與
;
④ 與
.
其中可作為該平面其他向量基底的是( )
A.①②
B.①③
C.①④
D.③④
科目:高中數學 來源: 題型:
【題目】設函數f(x)是定義在R上的偶函數,對任意x∈R,都有f(x)=f(x+4),且當x∈[﹣2,0]時,f(x)=( )x﹣1,若在區間(﹣2,6]內關于x的方程f(x)﹣loga(x+2)=0(a>1)恰有三個不同的實數根,則a的取值范圍是( )
A.( ,2)
B.( ,2)
C.[ ,2)
D.( ,2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券類穩健型產品的收益與投資額成正比,投資股票類風險型產品的收益與投資額的算術平方根成正比,已知兩類產品各投資1萬元時的收益分別為0.125萬元和0.5萬元,如圖:
(Ⅰ)分別寫出兩類產品的收益y(萬元)與投資額x(萬元)的函數關系;
(Ⅱ)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD中底面四邊形ABCD是正方形,各側面都是邊長為2的正三角形,M是棱PC的中點.建立空間直角坐標系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M﹣BD﹣C的平面角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x),定義
(Ⅰ)寫出函數F(2x﹣1)的解析式;
(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求實數a的值;
(Ⅲ)當 時,求h(x)=cosxF(x+sinx)的零點個數和值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上. (Ⅰ)求異面直線D1E與A1D所成的角;
(Ⅱ)若二面角D1﹣EC﹣D的大小為45°,求點B到平面D1EC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點E,點F為弦CD上異于點E的任意一點,連接BF、AF并延長交⊙O于點M、N.
(1)求證:B、E、F、N四點共圓;
(2)求證:AC2+BFBM=AB2 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com