精英家教網 > 高中數學 > 題目詳情

【題目】已知銳角△ABC的面積等于3 ,且AB=3,AC=4.
(1)求sin( +A)的值;
(2)求cos(A﹣B)的值.

【答案】
(1)解:∵AB=3,AC=4,SABC= ABACsinA= ×3×4×sinA=3 ,

∴sinA= ,

又△ABC是銳角三角形,

∴cosA= = ,

∴sin( +A)=cosA=


(2)解:∵AB=3,AC=4,cosA= ,

∴由余弦定理BC2=AB2+AC2﹣2ABACcosA=9+16﹣12=13,即BC= ,

由正弦定理 = 得:sinB= = ,

又B為銳角,∴cosB= = ,

則cos(A﹣B)=cosAcosB+sinAsinB= × + × =


【解析】(1)利用三角形的面積公式列出關系式,將AB,AC的值代入求出sinA的值,根據A為銳角,求出cosA的值,原式利用誘導公式化簡后將cosA的值代入計算即可求出值;(2)利用余弦定理列出關系式,將AB,AC,以及cosA的值代入求出BC的長,再由AC,BC,sinA的值,利用正弦定理求出sinB的值,確定出cosB的值,原式利用兩角和與差的余弦函數公式化簡后,將各自的值代入計算即可求出值.
【考點精析】通過靈活運用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下面給出了四個類比推理:

為實數,若;類比推出: 為復數,若.

若數列是等差數列, ,則數列也是等差數列;類比推出:若數列是各項都為正數的等比數列, ,則數列也是等比數列.

; 類比推出:若為三個向量,則.

④ 若圓的半徑為,則圓的面積為;類比推出:若橢圓的長半軸長為,短半軸長為,則橢圓的面積為.上述四個推理中,結論正確的是( )

A. ① ② B. ② ③ C. ① ④ D. ② ④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x的不等式ax2+5x+c>0的解集為{x| <x< },
(1)求a,c的值;
(2)解關于x的不等式ax2+(ac+b)x+bc≥0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知側棱垂直于底面的四棱柱中, , , ,

(1)若是線段上的點且滿足,求證:平面平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中, 的中點, .

(1)證明: 平面

(2)若,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知:以點 為圓心的圓與軸交于點、,與軸交于點、,其中為原點.

)求證: 的面積為定值.

)設直線與圓交于點,若,求:圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系中,動圓與圓外切,且與直線相切,記圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設過定點為非零常數)的動直線與曲線交于兩點,問:在曲線上是否存在點(與兩點相異),當直線的斜率存在時,直線的斜率之和為定值.若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有下列說法:
①y=sinx+cosx在區間(﹣ , )內單調遞增;
②存在實數α,使sinαcosα= ;
③y=sin( +2x)是奇函數;
④x= 是函數y=cos(2x+ )的一條對稱軸方程.
其中正確說法的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

部分圖像如圖所示.

(Ⅰ)求函數的解析式及圖像的對稱軸方程;

(Ⅱ)把函數圖像上點的橫坐標擴大到原來的倍(縱坐標不變),再向左平移

個單位,得到函數的圖象,求關于的方程

時所有的實數根之和.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视