【題目】已知函數f(x)= ,且f(1)=﹣1.
(1)求f(x)的解析式,并判斷它的奇偶性;
(2)判斷函數f(x)在(0,+∞)上的單調性并證明.
【答案】
(1)解:可求得a=﹣2,
f(x)= =﹣2x+
因為f(x)的定義域為(﹣∞,0)∪(0,+∞)
且f(﹣x)=2x﹣ =﹣f(x),
所以f(x)是奇函數
(2)解:f(x)在(0,+∞)上的單調遞減,
證明:設任意0<x1<x2,
則f(x1)﹣f(x2)=﹣2x1+ +2x2﹣
=(x2﹣x1)(2+
)
因為0<x1<x2 所以x2﹣x1>0且2+ >0,
所以 f(x1)>f(x2)
所以 f(x)在(0,+∞)上的單調遞減
【解析】(1)將a=﹣2代入f(x),求出函數的定義域,得到f(﹣x)=﹣f(x),從而判斷出函數的奇偶性;(2)根據函數單調性的定義證明函數的單調性即可.
【考點精析】掌握函數單調性的判斷方法和函數的奇偶性是解答本題的根本,需要知道單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,
,平面
底面
,
為
的中點,
是棱
上的點,
,
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若二面角大小為
,設
,試確定
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線(
),其準線方程為
,直線
過點
(
)且與拋物線交于
兩點,
為坐標原點.
(1)求拋物線方程,并證明:的值與直線
傾斜角的大小無關;
(2)若為拋物線上的動點,記
的最小值為函數
,求
的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①f(x)=x3﹣3x2是增函數,無極值.
②f(x)=x3﹣3x2在(﹣∞,2)上沒有最大值
③由曲線y=x,y=x2所圍成圖形的面積是
④函數f(x)=lnx+ax存在與直線2x﹣y=0平行的切線,則實數a的取值范圍是(﹣∞,2)
其中正確命題的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f (x)=ex-ax-1,其中e為自然對數的底數,a∈R.
(1)若a=e,函數g (x)=(2-e)x.
①求函數h(x)=f (x)-g (x)的單調區間;
②若函數的值域為R,求實數m的取值范圍;
(2)若存在實數x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,
求證:e-1≤a≤e2-e.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)滿足:f(x)+f′(x)>1,f(0)=4,則不等式exf(x)>ex+3(其中e為自然對數的底數)的解集為( )
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=k﹣ (其中k為常數);
(1)求:函數的定義域;
(2)證明:函數在區間(0,+∞)上為增函數;
(3)若函數為奇函數,求k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com