【題目】某企業產值在2008年~2017年的年增量(即當年產值比前一年產值增加的量)統計圖如圖所示(單位:萬元),下列說法正確的是( )
A. 2009年產值比2008年產值少
B. 從2011年到2015年,產值年增量逐年減少
C. 產值年增量的增量最大的是2017年
D. 2016年的產值年增長率可能比2012年的產值年增長率低
科目:高中數學 來源: 題型:
【題目】為了緩解日益擁堵的交通狀況,不少城市實施車牌競價策略,以控制車輛數量.某地車牌競價的基本規則是:①“盲拍”,即所有參與競拍的人都要網絡報價一次,每個人不知曉其他人的報價,也不知道參與當期競拍的總人數;②競價時間截止后,系統根據當期車牌配額,按照競拍人的出價從高到低分配名額.某人擬參加年
月份的車牌競拍,他為了預測最低成交價,根據競拍網站的數據,統計了最近
個月參與競拍的人數(見下表):
月份 | |||||
月份編號 | |||||
競拍人數 |
(1)由收集數據的散點圖發現,可用線性回歸模型擬合競拍人數(萬人)與月份編號
之間的相關關系.請用最小二乘法求
關于
的線性回歸方程:
,并預測
年
月份參與競拍的人數.
(2)某市場調研機構從擬參加年
月份車牌競拍人員中,隨機抽取了
人,對他們的擬報價價格進行了調查,得到如下頻數分布表和頻率分布直方圖:
報價區間(萬元) | |||||||
頻數 |
(i)求、
的值及這
位競拍人員中報價大于
萬元的概率;
(ii)若年
月份車牌配額數量為
,假設競拍報價在各區間分布是均勻的,請你根據以上抽樣的數據信息,預測(需說明理由)競拍的最低成交價.
參考公式及數據:①回歸方程,其中
,
;
②,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線頂點在原點,焦點在x軸上,且過點(4,4),焦點為F.
(1)求拋物線的焦點坐標和標準方程;
(2)P是拋物線上一動點,M是PF的中點,求M的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若f(x)<2x在(1,+∞)上恒成立,求實數a的取值范圍;
(2)若函數y=f(x)在[m,n]上的值域是[m,n],求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四面體ABCD中作截面PQR,若PQ與CB的延長線交于點M,RQ與DB的延長線交于點N,RP與DC的延長線交于點K.
(1)求證:直線平面PQR;
(2)求證:點K在直線MN上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數,關于
的不等式
的解集為
.
(Ⅰ)求、
的值;
(Ⅱ)設.
(i)若不等式在
上恒成立,求實數
的取值范圍;
(ii)若函數有三個不同的零點,求實數
的取值范圍(
為自然對數的底數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校為了對2018年錄取的大一理工科新生有針對性地進行教學,從大一理工科新生中隨機抽取40名,對他們2018年高考的數學分數進行分析,研究發現這40名新生的數學分數在
內,且其頻率
滿足
(其中
,
).
(1)求的值;
(2)請畫出這20名新生高考數學分數的頻率分布直方圖,并估計這40名新生的高考數學分數的平均數(同一組中的數據用該組區間的中點值作代表);
(3)將此樣本的頻率估計為總體的概率,隨機調查4名該校的大一理工科新生,記調查的4名大一理工科新生中“高考數學分數不低于130分”的人數為隨機變量,求的數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com