精英家教網 > 高中數學 > 題目詳情

【題目】已知正四棱錐的所有頂點都在球的球面上,該四棱錐的五個面所在的平面截球面所得的圓大小相同,若正四棱錐的高為2,則球的表面積為(

A.B.C.D.

【答案】A

【解析】

根據四棱錐的五個面所在的平面截球面所得的圓大小相同,考慮將底面ABCD和一個側面PAB放入同一個圓中,來計算相應的邊長,再根據球的性質計算半徑即可得球表面積.

如圖所示,圓是正方形ABCD和等腰△PAB的外接圓,設圓的半徑為r,

,

所以

所以

設點O是四棱錐P - ABCD的外接球的球心,F為正方形ABCD的中心,如圖,

PF平面ABCD,

所以在AFP中有

又因為AF的長度為圓的半徑,

所以

所以

設四棱錐P - ABCD的外接球的半徑為R,

中,,

所以,

因為,

所以

所以

解得

所以四棱錐P - ABCD的外接球的表面積為,

故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為:,傾斜角為銳角的直線l過點與單位圓相切.

1)求曲線C的直角坐標方程和直線l的參數方程;

2)設直線l與曲線C交于AB兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知在棱長為1的正方體中,,分別是線段,的中點,又分別在線段,上,且.設平面平面,現有下列結論:

平面

;

③直線與平面不垂直;

④當變化時,不是定直線.

其中不成立的結論是______.(填序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標準如下:4小時內(含4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(含24小時)收費30元;超過24小時,按前述標準重新計費.上述標準不足一小時的按一小時計費.為了調查該停車場一天的收費情況,現統計1000輛車的停留時間(假設每輛車一天內在該停車場僅停車一次),得到下面的頻數分布表:

(小時)

頻數(車次)

100

100

200

200

350

50

以車輛在停車場停留時間位于各區間的頻率代替車輛在停車場停留時間位于各區間的概率.

1)現在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調研,記錄并統計了停車時長與司機性別的列聯表:

合計

不超過6小時

30

6小時以上

20

合計

100

完成上述列聯表,并判斷能否有90%的把握認為“停車是否超過6小時”與性別有關?

2)(i表示某輛車一天之內(含一天)在該停車場停車一次所交費用,求的概率分布列及期望

ii)現隨機抽取該停車場內停放的3輛車,表示3輛車中停車費用大于的車輛數,求的概率.

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種昆蟲的日產卵數和時間變化有關,現收集了該昆蟲第1天到第5天的日產卵數據:

x

1

2

3

4

5

日產卵數y(個)

6

12

25

49

95

對數據初步處理后得到了如圖所示的散點圖和表中的統計量的值.

15

55

15.94

54.75

1)根據散點圖,利用計算機模擬出該種昆蟲日產卵數y關于x的回歸方程為(其中e為自然對數的底數),求實數ab的值(精確到0.1);

2)根據某項指標測定,若日產卵數在區間(e6e8)上的時段為優質產卵期,利用(1)的結論,估計在第6天到第10天中任取兩天,其中恰有1天為優質產卵期的概率.

附:對于一組數據(v1,μ1),(v2,μ2),,(vnμn),其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中, 平面, , , , , 的中點, 在線段上,且滿足.

(1)求證: 平面;

(2)求二面角的余弦值;

(3)在線段上是否存在點,使得與平面所成角的余弦值是,若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(如圖所示),且點在直線的左上方.

1)求橢圓的方程;

2)若,求的面積;

3)證明:的內切圓的圓心在一條定直線上。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,若橢圓的長軸長等于的直徑,且,成等差數列

(Ⅰ)求橢圓的方程;

(Ⅱ)設、是橢圓上不同的兩點,線段的垂直平分線軸于點,試求點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】網購已經成為我們日常生活中的一部分,某地區隨機調查了100名男性和100名女性在雙十一活動中用于網購的消費金額,數據整理如下:

男性消費金額頻數分布表

消費金額

(單位:元)

0~500

500~1000

1000~1500

1500~2000

2000~3000

人數

15

15

20

30

20

1)試分別計算男性、女性在此活動中的平均消費金額;

2)如果分別把男性、女性消費金額與中位數相差不超過200元的消費稱作理性消費,試問是否有5成以上的把握認為理性消費與性別有關.

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视