精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函數.
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的單調區間與極值.

【答案】解:(Ⅰ)∵f(x)=x3+bx2+cx,∴f'(x)=3x2+2bx+c.
從而g(x)=f(x)﹣f'(x)=x3+bx2+cx﹣(3x2+2bx+c)=x3+(b﹣3)x2+(c﹣2b)x﹣c
是一個奇函數,所以g(0)=0得c=0,由奇函數定義得b=3;
(Ⅱ)由(Ⅰ)知g(x)=x3﹣6x,從而g'(x)=3x2﹣6,
當g'(x)>0時,x<﹣或x>,
當g'(x)<0時,﹣<x<
由此可知是函數g(x的單調遞增區間;(-,)是函數g(x)的單調遞減區間;
g(x)在x=-時取得極大值,極大值為4,g(x)在x=時取得極小值,極小值為-4
【解析】(1)根據g(x)=f(x)﹣f'(x)是奇函數,且f'(x)=3x2+2bx+c能夠求出b與c的值.
(2)對g(x)進行求導,g'(x)>0時的x的取值區間為單調遞增區間,g'(x)<0時的x的取值區間為單調遞減區間.g'(x)=0時的x函數g(x)取到極值.
【考點精析】認真審題,首先需要了解函數奇偶性的性質(在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】共享單車進駐城市,綠色出行引領時尚,某市有統計數據顯示,2016年該市共享單車用戶年齡等級分布如圖1所示,一周內市民使用單車的頻率分布扇形圖如圖2所示,若將共享單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內使用的次數為6次或6次以上的稱為“經常使用單車用戶”,使用次數為5次或不足5次的稱為“不常使用單車用戶”,已知在“經常使用單車用戶”中有 是“年輕人”.
(Ⅰ)現對該市市民進行“經常使用共享單車與年齡關系”的調查,采用隨機抽樣的方法,抽取一個容量為200的樣本,請你根據圖表中的數據,補全下列2×2列聯表,并根據列聯表的獨立性檢驗,判斷能有多大把握可以認為經常使用共享單車與年齡有關?
使用共享單車情況與年齡列聯表

年輕人

非年輕人

合計

經常使用共享單車用戶

120

不常使用共享單車用戶

80

合計

160

40

200

(Ⅱ)將頻率視為概率,若從該市市民中隨機任取3人,設其中經常使用共享單車的“非年輕人”人數為隨機變量X,求X的分布列與期望.
(參考數據:

P(K2≥k0

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

其中,K2= ,n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=mln(x+1)﹣nx在點(1,f(1))處的切線與y軸垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的單調區間;
(Ⅱ)設g(x)=﹣x2+2x,確定非負實數a的取值范圍,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=x2cosx在 的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xex+ax2+2x+1在x=﹣1處取得極值.
(1)求函數f(x)的單調區間;
(2)若函數y=f(x)﹣m﹣1在[﹣2,2]上恰有兩個不同的零點,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知m>0,n>0, +mn的最小值為t.
(1)求t值
(2)解關于x的不等式|x﹣1|<t+2x.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某網絡營銷部門為了統計某市網友2015年11月11日在某網店的網購情況,隨機抽查了該市100名網友的網購金額情況,得到如圖頻率分布直方圖.
(1)估計直方圖中網購金額的中位數;
(2)若規定網購金額超過15千元的顧客定義為“網購達人”,網購金額不超過15千元的顧客定義為“非網購達人”;若以該網店的頻率估計全市“非網購達人”和“網購達人”的概率,從全市任意選取3人,則3人中“非網購達人”與“網購達人”的人數之差的絕對值為X,求X的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x| <2x≤2},B={x|ln(x﹣ )≤0},則A∩(RB)=(
A.
B.(﹣1, ]
C.[ ,1)
D.(﹣1,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy 中,F,A,B 分別為橢圓 的右焦點、右頂點和上頂點,若
(1)求a的值;
(2)過點P(0,2)作直線l 交橢圓于M,N 兩點,過M 作平行于x 軸的直線交橢圓于另外一點Q,連接NQ ,求證:直線NQ 經過一個定點.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视