(本小題滿分14分)已知函數

有兩個極值點

,且直線

與曲線

相切于

點.
(1) 求

和

(2) 求函數

的解析式;
(3) 在

為整數時,求過

點和

相切于一異于

點的直線方程
(1)根據

是方程

的兩個根,借助韋達定理可求出b,c的值.
(2)設出切點P的坐標

,根據

,可求出切點及d的值,從而確定f(x)的解析式.
(1)設直線

,和

相切于點


有兩個極值點

,于是


從而

………………4分
(2)又

,且

為切點.
③則

,由 ③ 求得

或

,由①②聯立知

.在

時,

;在

時,

,或

…9分
(3)當

為整數時,

符合條件,此時

為

,設過

的直線

和
由④⑤及

,可知

即

,再聯立⑥可知

,又

,

,此時

故切線方程為:

………………14分
練習冊系列答案
相關習題
科目:高中數學
來源:不詳
題型:單選題
設函數

,曲線

在點

處的切線方程為

,則曲線

在點

處切線的斜率為
查看答案和解析>>
科目:高中數學
來源:不詳
題型:填空題
已知

>0),其中r是區間(0,1)上的常數,則

的單調增區間為
。
查看答案和解析>>
科目:高中數學
來源:不詳
題型:填空題
已知

在

處的切線與

軸平行,若

的圖象經過四個象限,則實數

的取值范圍是
。
查看答案和解析>>
科目:高中數學
來源:不詳
題型:解答題
設函數

,

,其中

,a、b為常數,已知曲線

在點(2,0)處有相同的切線

。
(1)求a、b的值,并寫出切線

的方程;
(2)求函數

單調區間與極值。
查看答案和解析>>
科目:高中數學
來源:不詳
題型:填空題
.曲線

在與直線

的交點處的切線方程為
.
查看答案和解析>>
科目:高中數學
來源:不詳
題型:填空題
曲線

在

處的切線方程為_____________.
查看答案和解析>>
科目:高中數學
來源:不詳
題型:單選題
由直線x=

,x=2,曲線

及x軸所圍圖形的面積為( )
查看答案和解析>>
久久精品免费一区二区视