【題目】在正方體中,異面直線
和
分別在上底面
和下底面
上運動,且
,現有以下結論:
①當與
所成角為60°時,
與
所成角為60°;
②當與
所成角為60°時,
與側面
所成角為30°;
③與
所成角的最小值為45°
④與
所成角的最大值為90°
其中正確的是( )
A.①③B.②④C.①③④D.②③④
【答案】C
【解析】
根據異面直線夾角,線面夾角的性質,依次判斷每個選項:根據題意得到或
,計算夾角得到①正確,
與側面
所成角為
,②錯誤,當
或
時,
與
所成角的最小值為45°,③正確,當
或
時,
與
所成角的最大值為90°,④正確,得到答案.
如圖所示:易知為等邊三角形,故
和
所成角為
,故
或
,
易知,故
或
,易知
為等邊三角形,故
與
所成角為60°,即
與
所成角為60°,①正確;
易知為等邊三角形,故
與
所成角為60°,故
或
,此時
或
,易知
與平面
的夾角為
,故
與側面
所成角為
,②錯誤;
與平面
的夾角為
,故當
或
時,
與
所成角的最小值為45°,③正確;
易知平面
,
平面
,故
,當
或
時,
,故
與
所成角的最大值為90°,④正確.
故選:C.
科目:高中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=2,E是CD的中點,現以AE為折痕將△DAE向上折起,D變為D',使得平面D'AE⊥平面ABCE.
(1)求證:平面ABD'⊥平面BD'E;
(2)求直線CE與平面BCD'所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數在[120,130)內的頻率,并補全這個頻
率分布直方圖;
統計方法中,同一組數據常用該組區間的中點
值作為代表,據此估計本次考試的平均分;
(3)用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數段[120,130)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的PK賽,兩隊各由4名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽A隊選手獲勝的概率均為
,且各局比賽結果相互獨立,比賽結束時A隊的得分高于B隊的得分的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐中,
平面
,四邊形
是矩形,且
,
,
是線段
上的動點,
是線段
的中點.
(1)求證:平面
;
(2)若直線與平面
所成角為
,
①求線段的長;
②求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知直線
的參數方程為
(
為參數),以坐標原點為極點,以
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,直線
與曲線
交于
兩點.
(1)求直線l的普通方程和曲線
的直角坐標方程;
(2)已知點的極坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“三分損益法”是古代中國發明制定音律時所用的方法,其基本原理是:以一根確定長度的琴弦為基準,取此琴強長度的得到第二根琴弦,第二根琴弦長度的
為第三根琴弦,第三根琴弦長度的
為第四根琴弦.第四根琴弦長度的
為第五根琴弦.琴弦越短,發出的聲音音調越高,這五根琴弦發出的聲音按音調由低到高分別稱為“官、商、角(jué)、微(zhǐ)、羽”,則“角"和“徵”對應的琴弦長度之比為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·石家莊一模)祖暅是南北朝時期的偉大數學家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某兩名高三學生在連續9次數學測試中的成績(單位:分)進行統計得到折線圖,下面是關于這兩位同學的數學成績分析.
①甲同學的成績折線圖具有較好的對稱性,故平均成績為130分;
②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區間內;
③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關;
④乙同學連續九次測驗成績每一次均有明顯進步.
其中正確的個數為( 。
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com