【題目】如圖,四棱錐中,
,
,
,
,
.
(1)求證:平面平面
;
(2)在線段上是否存在點
,使得平面
與平面
所成銳二面角為
?若存在,求
的值;若不存在,說明理由.
【答案】(1)見證明;(2)見解析
【解析】
(1)利用余弦定理計算BC,根據勾股定理可得BC⊥BD,結合BC⊥PD得出BC⊥平面PBD,于是平面PBD⊥平面PBC;(2)建立空間坐標系,設λ,計算平面ABM和平面PBD的法向量,令法向量的夾角的余弦值的絕對值等于
,解方程得出λ的值,即可得解.
(1)證明:因為四邊形為直角梯形,
且,
,
,
所以,
又因為。根據余弦定理得
所以,故
.
又因為,
,且
,
平面
,所以
平面
,
又因為平面PBC,所以
(2)由(1)得平面平面
,
設為
的中點,連結
,因為
,
所以,
,又平面
平面
,
平面平面
,
平面
.
如圖,以為原點分別以
,
和垂直平面
的方向為
軸正方向,建立空間直角坐標系
,
則,
,
,
,
,
假設存在滿足要求,設
,即
,
所以,
易得平面的一個法向量為
.
設為平面
的一個法向量,
,
由得
,不妨取
.
因為平面與平面
所成的銳二面角為
,所以
,
解得,(不合題意舍去).
故存在點滿足條件,且
.
科目:高中數學 來源: 題型:
【題目】回收1噸廢紙可以生產出0.8噸再生紙,可能節約用水約100噸,節約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節約用煤約0.8噸,節約用水約120噸,回收每噸廢鉛蓄電池的費用約0.9萬元,回收1噸廢紙的費用約為0.2萬元.現用于回收廢紙和廢鉛蓄電池的費用不超過18萬元,在保證節約用煤不少于12噸的前提下,最多可節約用水約__________噸.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的兩個頂點分別為A(2,0),B(2,0),焦點在x軸上,離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點D為x軸上一點,過D作x軸的垂線交橢圓C于不同的兩點M,N,過D作AM的垂線交BN于點E.求證:△BDE與△BDN的面積之比為4:5.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,
,M是AB的中點.
(1)求證:;
(2)求二面角的余弦值;
(3)在線段EC上是否存在點P,使得直線AP與平面ABE所成的角為,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com