精英家教網 > 高中數學 > 題目詳情

已知函數),其中
(1)若曲線在點處相交且有相同的切線,求的值;
(2)設,若對于任意的,函數在區間上的值恒為負數,求的取值范圍.

(1);(2)

解析試題分析:(1)確定的值,需要確定兩個獨立的條件,依題意,首先在曲線上,代入得關于的方程,再,又得關于的方程,聯立求;(2)多元函數,可采取選取主元法.由題意知,對任意的,在恒成立,首先采取參變分離法,變形為恒成立,左邊看作自變量為的函數
,,只需求函數的最大值,且
試題解析:(1),切線斜率
由題知,即,解得
(2)由題知對任意的,在恒成立,
恒成立.
,則

,則對任意的,恒有,則恒有
時,,函數單調遞減,
時,,函數單調遞增。
=4,
所以,即
考點:1、導數的幾何意義;2、利用導數求函數的極值、最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知是自然對數的底數,函數.
(1)求函數的單調遞增區間;
(2)當時,函數的極大值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區間;
(2)在區間內存在,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關于θ的函數表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為實數,函數
(1)求的單調區間與極值;
(2)求證:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若函數在區間(-2,0)內恰有兩個零點,求a的取值范圍;
(2)當a=1時,求函數在區間[t,t+3]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知處取得極值,且在點處的切線斜率為.
⑴求的單調增區間;
⑵若關于的方程在區間上恰有兩個不相等的實數根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的極值;
(2)設函數若函數上恰有兩個不同零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=,且f(x)的圖象在x=1處與直線y=2相切.
(1)求函數f(x)的解析式;
(2)若P(x0,y0)為f(x)圖象上的任意一點,直線l與f(x)的圖象切于P點,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视