精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,中點,且平面,為線段上一動點,記

(1)當時,求異面直線所成角的余弦值;

(2)當與平面所成角的正弦值為時,求的值

【答案】(1)(2)

【解析】分析:(1)建立空間直角坐標系,設立各點坐標,根據向量數量積求向量夾角,最后根據線線角與向量夾角相等或互補得結果,(2)建立空間直角坐標系,設立各點坐標,利用方程組求平面的一個法向量,再根據向量數量積求向量夾角,最后根據線面角與向量夾角互余列等量關系,解得結果,

詳解:連接CE, 以分別為軸,

建立如圖空間直角坐標系,

,

因為F為線段AB上一動點,且,

, 所以

(1)當時,,

所以

(2)

設平面的一個法向量為=

, ,化簡得,取

與平面所成角為,

.

解得(舍去),所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】綠色出行越來越受到社會的關注,越來越多的消費者對新能源汽車感興趣但是消費者比較關心的問題是汽車的續駛里程某研究小組從汽車市場上隨機抽取20輛純電動汽車調查其續駛里程單次充電后能行駛的最大里程,被調查汽車的續駛里程全部介于50公里和300公里之間,將統計結果分成5組: ,繪制成如圖所示的頻率分布直方圖.

求直方圖中m的值;

求本次調查中續駛里程在的車輛數;

若從續駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車續駛里程在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點,,.

(1)求以線段為鄰邊的平行四邊形的另一頂點的坐標;

(2)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,已知曲線在點處的切線與直線平行

(Ⅰ)求的值;

(Ⅱ)是否存在自然數,使得方程內存在唯一的根?如果存在,求出;如果不存在,請說明理由。

(Ⅲ)設函數表示中的較小者),求的最大值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】邗江中學高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數為1,2,3的人數分別為3,3,4.現從這10人中選出2人作為該組代表參加座談會.

(1)記“選出2人參加義工活動的次數之和為4”為事件,求事件發生的概率;

(2)設為選出2人參加義工活動次數之差的絕對值,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的圓心在軸上,點是圓的上任一點,且當點的坐標為時,到直線距離最大.

(1)求直線被圓截得的弦長;

(2)已知,經過原點,且斜率為的直線與圓交于,兩點.

(Ⅰ)求證:為定值;

(Ⅱ)若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知⊙O1與⊙O2相交于A、B兩點,過點A作⊙O1的切線交⊙O2于點C,過點B作兩圓的割線,分別交⊙O1、⊙O2于點D、E,DE與AC相交于點P. (Ⅰ)求證:AD∥EC;
(Ⅱ)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的單調減函數是奇函數,當時,.

(Ⅰ)求的值;

(Ⅱ)求的解析式;

(Ⅲ)若對任意的,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點,

的值;

的平分線交線段AB于點D,求點D的坐標;

在單位圓上是否存在點C,使得?若存在,請求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视