【題目】如圖所示,已知⊙O1與⊙O2相交于A、B兩點,過點A作⊙O1的切線交⊙O2于點C,過點B作兩圓的割線,分別交⊙O1、⊙O2于點D、E,DE與AC相交于點P. (Ⅰ)求證:AD∥EC;
(Ⅱ)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.
【答案】解:(Ⅰ)證明:連接AB, ∵AC是⊙O1的切線,
∴∠BAC=∠D,
又∵∠BAC=∠E,
∴∠D=∠E,
∴AD∥EC.
(Ⅱ)∵PA是⊙O1的切線,PD是⊙O1的割線,
∴PA2=PBPD,
∴62=PB(PB+9)
∴PB=3,
在⊙O2中由相交弦定理,得PAPC=BPPE,
∴PE=4,
∵AD是⊙O2的切線,DE是⊙O2的割線,
∴AD2=DBDE=9×16,
∴AD=12
【解析】(I)連接AB,根據弦切角等于所夾弧所對的圓周角得到∠BAC=∠D,又根據同弧所對的圓周角相等得到∠BAC=∠E,等量代換得到∠D=∠E,根據內錯角相等得到兩直線平行即可;(II)根據切割線定理得到PA2=PBPD,求出PB的長,然后再根據相交弦定理得PAPC=BPPE,求出PE,再根據切割線定理得AD2=DBDE=DB(PB+PE),代入求出即可.
科目:高中數學 來源: 題型:
【題目】在公比為2的等比數列{an}中,a2與a3的等差中項是9 .
(1)求a1的值;
(2)若函數y=|a1|sin( x+φ),|φ|<π,的一部分圖象如圖所示,M(﹣1,|a1|),N(3,﹣|a1|)為圖象上的兩點,設∠MPN=β,其中P與坐標原點O重合,0<β<π,求tan(φ﹣β)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校的學生文娛團隊由理科組和文科組構成,具體數據如表所示:
組別 | 文科 | 理科 | ||
性別 | 男生 | 女生 | 男生 | 女生 |
人數 | 3 | 1 | 3 | 2 |
學校準備從該文娛團隊中選出4人到某社區參加大型公益活動演出,每選出一名男生,給其所在的組記1分;每選出一名女生,給其所在的組記2分,要求被選出的4人中文科組和理科組的學生都有.
(I)求理科組恰好得4分的概率;
(II)記文科組的得分為X,求隨機變量X的分布列和數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,已知
都是邊長為
的等邊三角形,
為
中點,且
平面
,
為線段
上一動點,記
.
(1)當時,求異面直線
與
所成角的余弦值;
(2)當與平面
所成角的正弦值為
時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某賓館有間標準相同的客房,客房的定價將影響入住率.經調查分析,得出每間客房的定價與每天的入住率的大致關系如下表:
每間客房的定價 | 220元 | 200元 | 180元 | 160元 |
每天的入住率 |
對于每間客房,若有客住,則成本為80元;若空閑,則成本為40元.要使此賓館每天的住房利潤最高,則每間客房的定價大致應為( )
A. 220元 B. 200元 C. 180元 D. 160元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若函數在區間
上存在零點,求實數
的取值范圍;
(2)當時,若對任意的
,總存在
使
成立,求實數
的取值范圍;
(3)若的值域為區間
,是否存在常數
,使區間
的長度為
?若存在,求出
的值,若不存在,請說明理由.(柱:區間
的長度為
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設不等式x2+y2≤4確定的平面區域為U,|x|+|y|≤1確定的平面區域為V.
(1)定義橫、縱坐標為整數的點為“整點”,在區域U內任取3個整點,求這些整點中恰有2個整點在區域V的概率;
(2)在區域U內任取3個點,記這3個點在區域V的個數為X,求X的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com