首屆世界低碳經濟大會在南昌召開,本屆大會以“節能減排,綠色生態”為主題.某單位在國家科研部門的支持下,進行技術攻關,采用了新工藝,把二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數關系可近似地表示為y=x2-200x+80 000,且每處理一噸二氧化碳得到可利用的化工產品價值為100元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?
科目:高中數學 來源: 題型:解答題
對于函數,若在定義域存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由;
(2)設是定義在
上的“局部奇函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知關于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩根,其中一根在區間(-1,0)內,另一根在區間(1,2)內,求實數m的取值范圍;
(2)若方程兩根均在區間(0,1)內,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x2-4,設曲線y=f(x)在點(xn,f(xn))
處的切線與x軸的交點為(xn+1,0)(n∈N+),其中x1為正實數.
(1)用xn表示xn+1;
(2)求證:對一切正整數n,xn+1≤xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數列{an}成等比數列,并求數列{xn}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=a-是偶函數,a為實常數.
(1)求b的值.
(2)當a=1時,是否存在n>m>0,使得函數y=f(x)在區間[m,n]上的函數值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某養殖廠需定期購買飼料,已知該廠每天需要飼料200千克,每千克飼料的價格為1.8元,飼料的保管費與其他費用平均每千克每天0.03元,購買飼料每次支付運費300元.
(1)求該廠多少天購買一次飼料才能使平均每天支付的總費用最少;
(2)若提供飼料的公司規定,當一次購買飼料不少于5噸時,其價格可享受八五折優惠(即原價的85%).問:該廠是否應考慮利用此優惠條件?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩條直線l1:y=m和l2:y=,l1與函數y=|log2x|的圖象從左至右相交于點A、B,l2與函數y=|log2x|的圖象從左至右相交于點C、D.記線段AC和BD在x軸上的投影長度分別為a、b.當m變化時,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com