【題目】已知圓有以下性質:
①過圓上一點
的圓的切線方程是
.
②若不在坐標軸上的點為圓
外一點,過
作圓
的兩條切線,切點分別為
,則
垂直
,即
.
(1)類比上述有關結論,猜想過橢圓上一點
的切線方程 (不要求證明);
(2)若過橢圓外一點
(
不在坐標軸上)作兩直線,與橢圓相切于
兩點,求證:
為定值.
科目:高中數學 來源: 題型:
【題目】已知兩條直線l1:y=m和l2:y= (m>0),l1與函數y=|log2x|的圖象從左至右相交于點A,B,l2與函數y=|log2x|的圖象從左至右相交于點C,D.記線段AC和BD在X軸上的投影長度分別為a,b,當m變化時,
的最小值為( )
A.16
B.8
C.8
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,記A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且對任意n∈N* , 三個數A(n),B(n),C(n)組成等差數列,求數列{an}的通項公式.
(2)證明:數列{an}是公比為q的等比數列的充分必要條件是:對任意n∈N* , 三個數A(n),B(n),C(n)組成公比為q的等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數f(x),如果對于任意給定的等比數列{an},{f(an)}仍是等比數列,則稱f(x)為“保等比數列函數”.現有定義在(﹣∞,0)∪(0,+∞)上的如下函數:①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數列函數”的f(x)的序號為( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),
(1)當BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當三棱錐A﹣BCD的體積最大時,設點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京某附屬中學為了改善學生的住宿條件,決定在學校附近修建學生宿舍,學?倓辙k公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關,樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.
(1)若學生宿舍建筑為層樓時,該樓房綜合費用為
萬元,綜合費用是建筑費用與購地費用之和),寫出
的表達式;
(2)為了使該樓房每平方米的平均綜合費用最低,學校應把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?
【答案】(1);(2)學校應把樓層建成
層,此時平均綜合費用為每平方米
萬元
【解析】
由已知求出第
層樓房每平方米建筑費用為
萬元,得到第
層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高
萬元
,然后利用等差數列前
項和求建筑
層樓時的綜合費用
;
設樓房每平方米的平均綜合費用為
,則
,然后利用基本不等式求最值.
解:由建筑第5層樓房時,每平方米建筑費用為
萬元,
且樓房每升高一層,整層樓每平方米建筑費用提高萬元,
可得建筑第1層樓房每平方米建筑費用為:萬元.
建筑第1層樓房建筑費用為:萬元
.
樓房每升高一層,整層樓建筑費用提高:萬元
.
建筑第x層樓時,該樓房綜合費用為:.
;
設該樓房每平方米的平均綜合費用為
,
則:,
當且僅當,即
時,上式等號成立.
學校應把樓層建成10層,此時平均綜合費用為每平方米
萬元.
【點睛】
本題考查簡單的數學建模思想方法,訓練了等差數列前n項和的求法,訓練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結束】
20
【題目】已知.
(1)求函數的最小正周期和對稱軸方程;
(2)若,求
的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
滿足:對任意的
,都有:
(1)求證:函數是奇函數;
(2)若當時,有
,求證:
在
上是減函數;
(3)在(2)的條件下解不等式:;
(4)在(2)的條件下求證:.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com