精英家教網 > 高中數學 > 題目詳情

【題目】1)已知數列,其中,且數列為等比數列,求常數p

2)設、是公比不相等的兩個等比數列,,證明:數列不是等比數列.

【答案】1p=2p=3;(2)證明見解析.

【解析】

1)第一問中,利用給定的等比數列,結合定義得到p的值;(2)根據設、是公比不相等的兩個等比數列,,那么可驗證前幾項是否是等比數列來判定結論.

1)因為{cn1pcn}是等比數列,

故有:(cn1pcn2=(cn2pcn1)(cnpcn1),將cn2n3n代入上式,得:

2n13n1p2n3n)]2=[2n23n2p2n13n1)]·2n3np2n13n1)],

即[(2p2n+(3p3n2

=[(2p2n1+(3p3n1][(2p2n1+(3p3n1],

整理得2p)(3p·2n·3n0,解得p=2p=3.

2)證明:設{an}、{bn}的公比分別為p、q,p≠q,cn=an+bn.

為證{cn}不是等比數列只需證c22≠c1·c3.

事實上,c22=(a1pb1q2a12p2b12q22a1b1pq

c1·c3=(a1b1)(a1p2b1q2)=a12p2b12q2a1b1p2q2),

由于p≠q,p2q22pq,又a1、b1不為零,

因此c22≠c1·c3,

故{cn}不是等比數列.

本試題主要是考查了等比數列的概念的運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某城市現有人口總數為萬人,如果年自然增長率為,試解答下列問題:

1)寫出該城市經過年后的人口總數關于的函數關系式;

2)用程序流程圖表示計算年以后該城市人口總數的算法;

3)用程序流程圖表示如下算法:計算大約多少年以后該城市人口將達到萬人.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖像是由函數的圖像經如下變換得到:先將圖像上所有點的縱坐標伸長到原來的2倍橫坐標不變,再將所得到的圖像向右平移個單位長度.

求函數的解析式,并求其圖像的對稱軸方程;

已知關于的方程內有兩個不同的解

1求實數m的取值范圍;

2證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知平面平面,,.求:

1所成角;

2與平面所成角;

3)二面角大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

(注意:在試題卷上作答無效)

已知5只動物中有1只患有某種疾病,需要通過化驗血液來確定患病的動物.血液化驗結果呈陽性的即為患病動物,呈陰性即沒患病.下面是兩種化驗方案:

方案甲:逐個化驗,直到能確定患病動物為止;

方案乙:先任取3只,將它們的血液混在一起化驗.若結果呈陽性則表明患病動物為這3只中的1只,然后再逐個化驗,直到能確定患病動物為止;若結果呈陰性則在另外2只中任取1只化驗.

求依方案甲所需化驗次數不少于依方案乙所需化驗次數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱三角形數列,對于三角形數列,如果函數使得仍為一個三角形數列,則稱是數列保三角形函數,.

1)已知是首項為2,公差為1的等差數列,若是數列保三角形函數,求的取值范圍;

2)已知數列的首項為2010是數列的前項和,且滿足,證明三角形數列;

3)根據保三角形函數的定義,對函數,和數列1提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

按照某學者的理論,假設一個人生產某產品單件成本為元,如果他賣出該產品的單價為元,則他的滿意度為;如果他買進該產品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進)的滿意度分別為,則他對這兩種交易的綜合滿意度為.

現假設甲生產A、B兩種產品的單件成本分別為12元和5元,乙生產A、B兩種產品的單件成本分別為3元和20元,設產品A、B的單價分別為元和元,甲買進A與賣出B的綜合滿意度為,乙賣出A與買進B的綜合滿意度為

(1)關于、的表達式;當時,求證:=;

(2),當、分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?(3)(2)中最大的綜合滿意度為,試問能否適當選取、的值,使得同時成立,但等號不同時成立?試說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,平面, 上一點,為菱形對角線的交點.

)證明:平面平面;

)若,四棱錐的體積是四棱錐的體積的,求二面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩定性,需下部支撐箱的面積為,高度為2m,若路面AB側邊CFDE,底部EF的造價分別為4a千元/m,5a千元/m,6a千元/ma為正常數),

1)試用θ表示箱梁的總造價y(千元);

2)試確定cosθ的值,使總造價最低?并求最低總造價.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视