【題目】已知函數,函數
.
(Ⅰ)求函數的單調區間;
(Ⅱ)若不等式在
上恒成立,求實數a的取值范圍;
(Ⅲ)若,求證不等式
.
【答案】(1) g(x)的增區間,減區間
;(2)
;(3)見解析.
【解析】試題分析:(1)根據導數的正負情況研究函數的單調性;(2)恒成立求參轉化為
恒成立,求到研究函數單調性和最值;(3)轉化為
在
上恒成立。通過求導研究函數單調性,求得函數最值。
(Ⅰ)g(x)的定義域為 ,
,
當
時,
在
上恒成立
所以g(x)的增區間,無減區間當
時,令
得
令得
所以g(x)的增區間
,減區間
.
(Ⅱ) 即
在
上恒成立
設,考慮到
,在
上為增函數,
,
當
時,
,
在
上為增函數,
恒成立
當時,
,
在
上為增函數
,在
上,
,
遞減,
,這時不合題意, 綜上所述,
(Ⅲ)要證明在上,
只需證明 ,由(Ⅱ)當a =0時,在
上,
恒成立, 再令
, 在
上,
,
遞增,所以
即
,相加,得
,所以原不等式成立.
科目:高中數學 來源: 題型:
【題目】設f(x)=|x﹣3|+|x﹣4|. (Ⅰ)解不等式f(x)≤2;
(Ⅱ)若對任意實數x∈[5,9],f(x)≤ax﹣1恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=3sin(ωx+) 的部分圖象如圖所示,A,B兩點之間的距離為10,且f(2)=0,若將函數f(x)的圖象向右平移t(t>0)的單位長度后所得函數圖象關于y軸對稱,則t的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C的圓心在直線3x+y﹣1=0上,且x軸,y軸被圓C截得的弦長分別為2 ,4
,若圓心C位于第四象限
(1)求圓C的方程;
(2)設x軸被圓C截得的弦AB的中心為N,動點P在圓C內且P的坐標滿足關系式(x﹣1)2﹣y2= ,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x),若在定義域內存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數f(x)的局部對稱點.
(1)若a∈R,a≠0,證明:函數f(x)=ax2+x﹣a必有局部對稱點;
(2)若函數f(x)=2x+b在區間[﹣1,1]內有局部對稱點,求實數b的取值范圍;
(3)若函數f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: 經過點P(2,1),且離心率為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設O為坐標原點,在橢圓短軸上有兩點M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點,如果經過定點請求出定點的坐標,如果不經過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2ax+3在(﹣∞,1]上是減函數,當x∈[a+1,1]時,f(x)的最大值與最小值之差為g(a),則g(a)的最小值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=2sin(2x+ ),g(x)=mcos(2x﹣
)﹣2m+3(m>0),若對任意x1∈[0,
],存在x2∈[0,
],使得g(x1)=f(x2)成立,則實數m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com