精英家教網 > 高中數學 > 題目詳情

【題目】某池塘中原有一塊浮草,浮草蔓延后的面積(平方米)與時間(月)之間的函數關系式是,它的圖象如圖所示,給出以下命題:①池塘中原有浮草的面積是平方米;②第個月浮草的面積超過平方米;③浮草每月增加的面積都相等;④若浮草面積達到平方米,平方米,平方米所經過的時間分別為,則.其中正確命題的序號有_____.(注:請寫出所有正確結論的序號)

【答案】①②④

【解析】

直接利用函數的圖象求出函數的解析式,進一步利用函數的額關系式再利用函數的性質的應用求出結果.

解:浮草蔓延后的面積(平方米)與時間(月)之間的函數關系式是,函數的圖象經過

所以 ,解得

①當,故選項A正確.

②當第個月時,,故②正確.

③當時,,增加,當時,,增加,故每月的增加不相等,故③錯誤.

④根據函數的解析式,解得,

同理,,

所以,

所以則.故④正確.

故答案為:①②④.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直線xx1,xx2yf(x)圖象的任意兩條對稱軸,且|x1x2|的最小值為 .

(Ⅰ)求f(x)的表達式;

(Ⅱ)將函數f(x)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數yg(x)的圖象,求函數g(x)的單調減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設拋物線的準線軸交于橢圓的右焦點,為左焦點,橢圓的離心率為,拋物線與橢圓交于軸上方一點,連接并延長于點上一動點,且在之間移動.

(1)當取最小值時,求的方程;

(2)若的邊長恰好是三個連接的自然數,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】十九大提出,堅決打贏脫貧攻堅戰,某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)按分層抽樣的方法從質量落在 的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質量均小于2000克的概率;

(2)以各組數據的中間數代表這組數據的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:

A.所有蜜柚均以40元/千克收購;

B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.

請你通過計算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4。

  1. 求橢圓的方程;
  2. 設直線與橢圓相交于不同的兩點,已知點的坐標為(),點在線段的垂直平分線上,且,求的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合M是滿足下列性質的函數的全體:在定義域內存在,使得成立.

(1)函數是否屬于集合M?說明理由;

(2)設函數,求的取值范圍;

(3)已知函數圖象與函數的圖象有交點,根據該結論證明:函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中正確的個數是( )

①命題:“、,若,則”,用反證法證明時應假設;

②若,則中至少有一個大于;

③若、、成等比數列,則;

④命題:“,使得”的否定形式是:“,總有.

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于定義在區間D上的函數,若存在閉區間和常數,使得對任意,都有,且對任意∈D,當時,恒成立,則稱函數為區間D上的平底型函數.

)判斷函數是否為R上的平底型函數? 并說明理由;

)設是()中的平底型函數,k為非零常數,若不等式對一切R恒成立,求實數的取值范圍;

)若函數是區間上的平底型函數,求的值.

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视