精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=lnx,g(x)=0.5x2﹣bx,(b為常數).
(1)函數f(x)的圖象在點(1,f(1))處的切線與函數g(x)的圖象相切,求實數b的值;
(2)若函數h(x)=f(x)+g(x)在定義域上不單調,求實數b的取值范圍.

【答案】
(1)解:因為f(x)=lnx,所以 ,因此f′(1)=1,

所以函數f(x)的圖象在點(1,0)處的切線方程為y=x﹣1,

得x2﹣2(b+1)x+2=0.

由△=4(b+1)2﹣8=0,得


(2)解:因為h(x)=f(x)+g(x)=lnx+0.5x2﹣bx(x>0),

所以 ,

若函數在定義域內不單調,則

可知h'(x)<0在(0,+∞)上有解,

因為x>0,設u(x)=x2﹣bx+1,因為u(0)=1>0,

則只要 解得b>2,

所以b的取值范圍是(2,+∞)


【解析】(1)求出f(x)的導數,可得切線的斜率和切點,可得切線的方程,聯立二次函數,由判別式為0,解方程即可得到b的值;(2)求出h(x)的導數,可得h'(x)<0在(0,+∞)上有解,由二次函數的性質,可得b的不等式,即可得到b的范圍.
【考點精析】利用利用導數研究函數的單調性和函數的極值與導數對題目進行判斷即可得到答案,需要熟知一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減;求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數f(x)=ax2+2(a﹣3)x+1在區間[﹣2,+∞)上遞減,則實數a的取值范圍是(
A.(﹣∞,0)
B.[﹣3,+∞)
C.[﹣3,0]
D.(0,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本題滿分12分甲、乙兩位學生參加數學競賽培訓現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用莖葉圖表示這兩組數據;

2現要從中選派一人參加數學競賽,從統計學的角度在平均數、方差或標準差中選兩個分析你認為選派哪位學生參加合適?請說明理由

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列四個結論: ①若x>0,則x>sinx恒成立;
②“若am2<bm2 , 則a<b”的逆命題為真命題
m∈R,使f(x)=(m﹣1)x 是冪函數,且在(﹣∞,0)上單調遞減
④對于命題p:x∈R使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0
其中正確結論的個數是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我校對高二600名學生進行了一次知識測試,并從中抽取了部分學生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

(1)填寫頻率分布表中的空格,補全頻率分布直方圖,并標出每個小矩形對應的縱軸數據;

(2)請你估算該年級學生成績的中位數;

(3)如果用分層抽樣的方法從樣本分數在[60,70)和[80,90)的人中共抽取6人,再從6人中選2人,求2人分數都在[80,90)的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系下,已知曲線C1:ρ=cosθ+sinθ和曲線C2:ρsin(θ﹣ )=
(1)求曲線C1和曲線C2的直角坐標方程;
(2)當θ∈(0,π)時,求曲線C1和曲線C2公共點的一個極坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+bx2+cx+d的圖象如圖,則函數 的單調遞減區間是(
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A、BC的對邊分別為a、b、c.已知cosC

(1),求△ABC的面積;

(2)設向量,,且,求sin(BA)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解某社區居民的家庭年收入與年支出的關系,隨機調查了該社區5戶家庭,得到如下統計數據表:

收入x/萬元

8.2

8.6

10.0

11.3

11.9

支出y/萬元

6.2

7.5

8.0

8.5

9.8

根據上表可得回歸直線方程x+,其中=0.76, ,據此估計,該社區一戶居民年收入為15萬元家庭的年支出為_____萬元.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视