【題目】已知圓,圓
,動圓
與圓
外切并與圓
內切,圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)若雙曲線的右焦點即為曲線
的右頂點,直線
為
的一條漸近線.
①.求雙曲線C的方程;
②.過點的直線
,交雙曲線
于
兩點,交
軸于
點(
點與
的頂點不重合),當
,且
時,求
點的坐標.
【答案】(1)(2)①
②
【解析】
試題分析:(1)由兩圓相切可得到圓心距和半徑的關系,結合橢圓定義可知曲線
為橢圓,進而可求得方程;(2)①由曲線E的方程求得右頂點,從而得到曲線C的右焦點,結合漸近線可求得雙曲線中的
值,從而得到雙曲線方程;②由向量關系
及
可求得點
的關系式
,將直線方程及雙曲線聯立轉化為二次方程,利用韋達定理得到
,結合
可求得
的值
試題解析:(1)因為圓P與圓M外切并且與圓N內切,所以
,………………………1分
由橢圓的定義可知,曲線C是以M,N為左右焦點,長半軸長為2,短半軸長為的
橢圓,…3分 ( 求出給1分,求出
得1分) 則此方程為
.…4分
(2)設雙曲線方程為,由橢圓
,求得兩焦點為
,
所以對于雙曲線,…… 5分 又
為雙曲線
的一條漸近線,
所以,解得
,… 6分 故雙曲線
的方程
.…… 7分
(3)解法一:由題意知直線的斜率
存在且不等于零.
設的方程:
,
,則
,
,……… 8分
所以從而
在雙曲線
上,
,………………9分
,
.
同理有………………………10分
若,則直線
過頂點,不合題意,
是二次方程
的兩根.
,
,……11分 此時
.
所求
的坐標為
.………… 12分
解法二:由題意知直線的斜率
存在且不等于零
設的方程:
,則
.
,
.
,
,
,
… 8分
又,
,即
,……9分
將代入
,得
,………………10分
,否則
與漸近線平行.
.………11分
,
,
.………………………12分
科目:高中數學 來源: 題型:
【題目】候鳥每年都要隨季節的變化而進行大規模地遷徙,研究某種鳥類的專家發現,該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為:v=a+blog3 (其中a,b是實數).據統計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種商品每件進價9元,售價20元,每天可賣出69件.若售價降低,銷售量可以增加,且售價降低元時,每天多賣出的件數與
成正比.已知商品售價降低3元時,一天可多賣出36件.
(Ⅰ)試將該商品一天的銷售利潤表示成的函數;(Ⅱ)該商品售價為多少元時一天的銷售利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓+
=1(a>b>0)的左焦點為F,右頂點為A,拋物線y2=
(a+c)x與橢圓交于B,C兩點,若四邊形ABFC是菱形,則橢圓的離心率等于( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系.
(1)將圓C和直線l的方程化為極坐標方程;
(2)P是l上的點,射線OP交圓C于點R,又點Q在OP上且滿足|OQ|·|OP|=|OR|2,當點P在l上移動時,求點Q軌跡的極坐標方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com