精英家教網 > 高中數學 > 題目詳情

【題目】如圖,直三棱柱, 的中點.

1證明 平面;

2, ,求點到平面的距離.

【答案】(1)證明見解析;(2).

【解析】試題分析:(1)連接,設的交點為,則的中點,連接,又的中點,由三角形中位線定理可得,從而根據線面平行的判定定理可得平面;(2)設點到平面的距離為,因為的中點在平面上,故到平面的距離也為,三棱錐的體積, 的面積,由得結果.

試題解析:(1)連接,設的交點為,則的中點,連接,又的中點,所以.又平面, 平面,所以平面.

(2)由, 的中點,所以,

在直三棱柱中, , ,所以,

,所以 ,所以.

設點到平面的距離為,因為的中點在平面上,

到平面的距離也為,三棱錐的體積,

的面積,則,得,

故點到平面的距離為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】空間中有不共面的個點.求證:存在無窮個平面,恰好通過其中的兩個點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C:的右焦點為F,點A(一2,2)為橢圓C內一點。若橢圓C上存在一點P,使得|PA|+|PF|=8,則m的取值范圍是( ).

A. B. [9,25] C. D. [3,5]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐各棱所在的6條直線上,互相垂直的最多有兒對?(每兩條組成一對)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,設

(Ⅰ)求函數的周期及單調增區間。

(Ⅱ)設的內角的對邊分別為,已知 ,求邊的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為抑制房價過快上漲和過度炒作,各地政府響應中央號召,因地制宜出臺了系列房價調控政策.某市為擬定出臺房產限購的年齡政策為了解人們對房產限購年齡政策的態度,對年齡在歲的人群中隨機調查100人,調查數據的頻率分布直方圖和支持房產限購的人數與年齡的統計結果如下:

年齡

支持的人數

15

5

15

28

17

1)由以上統計數據填列聯表,并判斷能否在犯錯誤的概率不超過的前提下認為以44歲為分界點的不同人群對房產限購年齡政策的支持度有差異;

44歲以下

44歲及44歲以上

總計

支持

不支持

總計

2)若以44歲為分界點,從不支持房產限購的人中按分層抽樣的方法抽取8人參加政策聽證會.現從這8人中隨機抽2人.

①抽到1人是44歲以下時,求抽到的另一人是44歲以上的概率.

②記抽到44歲以上的人數為X,求隨機變量X的分布列及數學期望.

參考數據:

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產的輪胎的寬度是否達標,分別從兩廠隨機各選取了個輪胎,將每個輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:

(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;

(2)輪胎的寬度在內,則稱這個輪胎是標準輪胎.

(i)若從甲乙提供的個輪胎中隨機選取個,求所選的輪胎是標準輪胎的概率;

(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標準輪胎寬度的方差大小,根據兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某班學生喜好體育運動是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:

喜好體育運動

不喜好體育運動

男生

5

女生

10

已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數為6

1)請將上面的列聯表補充完整;

2)能否在犯錯概率不超過0.01的前提下認為喜好體育運動與性別有關?說明你的理由;

3)在上述喜好體育運動的6人中隨機抽取兩人,求恰好抽到一男一女的概率.

參考公式:

獨立性檢驗臨界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,底面,,點的中點,,交于點

(1)求證:平面平面;

(2)求三棱錐的體積

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视