精英家教網 > 高中數學 > 題目詳情

已知數列滿足遞推式:
(Ⅰ)若,求的遞推關系(用表示);
(Ⅱ)求證:

(Ⅰ);(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)要得的遞推關系,首先找到的遞推關系.由,
代入的遞推關系便可得的遞推關系.
(Ⅱ)由(Ⅰ)可得:

數列中涉及前項和的不等式的證明,一般有兩個大的方向,一種是先求和,后放縮;一種是先放縮,后求和.在本題中顯然不可能先求和.所以選擇先放縮后求和的方法.本題中還是一個有絕對值符號的式子,所以還應去掉絕對值符號.在去絕對值符號時,需要對分奇數與偶數討論:,注意這里的分母,一個是加1,一個是減1,這種情況下,不能單獨放縮,而是將兩項相加后再放縮.
,這樣再分是奇數和偶數,就可使問題得證.
試題解析:(Ⅰ)…………………①
代入①式得,

(Ⅱ).
分奇數與偶數討論:,則
,則
;


綜上所述,原不等式成立.
考點:1、遞推數列;2、不等式的證明.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知數列中,,為數列的前項和,且
(1)求數列的通項公式;
(2)設,求數列的前項的和;
(3)證明對一切,有

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環境的污染,國家鼓勵和補貼購買小排量汽車的消費者,同時在部分地區采取對新車限量上號.某市采取對新車限量上號政策,已知2013年年初汽車擁有量為=100萬輛),第年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為,該年的增長量的乘積成正比,比例系數為其中=200萬.
(1)證明:;
(2)用表示;并說明該市汽車總擁有量是否能控制在200萬輛內.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列,,,
(1)求證:為等比數列,并求出通項公式;
(2)記數列 的前項和為,求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的首項其中令集合.
(Ⅰ)若,寫出集合中的所有的元素;
(Ⅱ)若,且數列中恰好存在連續的7項構成等比數列,求的所有可能取值構成的集合;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列是等差數列,且,;又若是各項為正數的等比數列,且滿足,其前項和為.
(1)分別求數列,的通項公式,
(2)設數列的前項和為,求的表達式,并求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知正項數列的前項和為,的等比中項.
(1)求證:數列是等差數列;
(2)若,且,求數列的通項公式;
(3)在(2)的條件下,若,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列中,,前
(Ⅰ)求證:數列是等差數列; (Ⅱ)求數列的通項公式;
(Ⅲ)設數列的前項和為,是否存在實數,使得對一切正整數都成立?若存在,求的最小值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

給定常數,定義函數,數列滿足.
(1)若,求;
(2)求證:對任意,;
(3)是否存在,使得成等差數列?若存在,求出所有這樣的,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视