精英家教網 > 高中數學 > 題目詳情

經市場調查,某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數,且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數關系式;
(2)求日銷售額S的最大值.

(1)S=(2)6400.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數g(x)=f(x)-mx (x∈R)是單調函數,求證:m≤0或m≥1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某校要建一個面積為450平方米的矩形球場,要求球場的一面利用舊墻,其他各面用鋼筋網圍成,且在矩形一邊的鋼筋網的正中間要留一個3米的進出口(如圖).設矩形的長為米,鋼筋網的總長度為米.

(1)列出的函數關系式,并寫出其定義域;
(2)問矩形的長與寬各為多少米時,所用的鋼筋網的總長度最?
(3)若由于地形限制,該球場的長和寬都不能超過25米,問矩形的長與寬各為多少米時,所用的鋼筋網的總長度最小?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

要在墻上開一個上半部為半圓形、下部為矩形的窗戶(如圖所示),在窗框為定長的條件下,要使窗戶能夠透過最多的光線,窗戶應設計成怎樣的尺寸?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

市場營銷人員對過去幾年某商品的價格及銷售數量的關系作數據分析發現有如下規律:該商品的價格每上漲x%(x>0),銷售數量就減少kx%(其中k為正常數).目前該商品定價為每個a元,統計其銷售數量為b個.
(1)當k=時,該商品的價格上漲多少,才能使銷售的總金額達到最大?
(2)在適當的漲價過程中,求使銷售總金額不斷增加時k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求k的值;
(2)設g(x)=log4,若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經預測,一個橋墩的費用為256萬元,相鄰兩個橋墩之間的距離均為x,且相鄰兩個橋墩之間的橋面工程費用為(1+)x萬元,假設所有橋墩都視為點且不考慮其他因素,記工程總費用為y萬元.
(1)試寫出y關于x的函數關系式;
(2)當m=1280米時,需要新建多少個橋墩才能使y最。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2+mx+n的圖象過點(1,3),且f(-1+x)=f(-1-x)對任意實數都成立,函數y=g(x)與y=f(x)的圖象關于原點對稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)若函數上不具有單調性,求實數的取值范圍;
(2)若.
(。┣髮崝的值;
(ⅱ)設,,當時,試比較,,的大。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视