精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x2+mx+n的圖象過點(1,3),且f(-1+x)=f(-1-x)對任意實數都成立,函數y=g(x)與y=f(x)的圖象關于原點對稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數,求實數λ的取值范圍.

(1)g(x)=-x2+2x(2)(-∞,0].

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某通訊公司需要在三角形地帶區域內建造甲、乙兩種通信信號加強中轉站,甲中轉站建在區域內,乙中轉站建在區域內.分界線固定,且=百米,邊界線始終過點,邊界線滿足
()百米,百米.

(1)試將表示成的函數,并求出函數的解析式;
(2)當取何值時?整個中轉站的占地面積最小,并求出其面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

經市場調查,某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數,且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數關系式;
(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2-4,設曲線yf(x)在點(xn,f(xn))
處的切線與x軸的交點為(xn+1,0)(n∈N),其中x1為正實數.
(1)用xn表示xn+1;
(2)求證:對一切正整數nxn+1xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數列{an}成等比數列,并求數列{xn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關系有經驗公式P=,Q=t,今該公司將5億元投資于這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關于x的函數表達式.
(2)總利潤的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=ax2bxb-1(a≠0).
(1)當a=1,b=-2時,求函數f(x)的零點;
(2)若對任意b∈R,函數f(x)恒有兩個不同零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若xlog34=1,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知兩條直線l1:y=m和l2:y=,l1與函數y=|log2x|的圖象從左至右相交于點A、B,l2與函數y=|log2x|的圖象從左至右相交于點C、D.記線段AC和BD在x軸上的投影長度分別為a、b.當m變化時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知m、n為正整數,a>0且a≠1,且logam+loga+loga+…+loga=logam+logan,求m、n的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视