精英家教網 > 高中數學 > 題目詳情

設函數f(x)=ax2bxb-1(a≠0).
(1)當a=1,b=-2時,求函數f(x)的零點;
(2)若對任意b∈R,函數f(x)恒有兩個不同零點,求實數a的取值范圍.

(1)3和-1(2)(0,1)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2+mx+n的圖象過點(1,3),且f(-1+x)=f(-1-x)對任意實數都成立,函數y=g(x)與y=f(x)的圖象關于原點對稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)若函數上不具有單調性,求實數的取值范圍;
(2)若.
(ⅰ)求實數的值;
(ⅱ)設,,當時,試比較,的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)的二次項系數為a,且不等式f(x)>2x的解集為(-1,3).
(1)若函數g(x)=xf(x)在區間內單調遞減,求a的取值范圍;
(2)當a=-1時,證明方程f(x)=2x3-1僅有一個實數根;
(3)當x∈[0,1]時,試討論|f(x)+(2a-1)x+3a+1|≤3成立的充要條件.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=ax2bxb-1(a≠0).
(1)當a=1,b=-2時,求函數f(x)的零點;
(2)若對任意b∈R,函數f(x)恒有兩個不同零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某公司欲建連成片的網球場數座,用288萬元購買土地20000平方米,每座球場的建筑面積為1000平方米,球場每平方米的平均建筑費用與所建的球場數有關,當該球場建n座時,每平方米的平均建筑費用表示,且(其中),又知建5座球場時,每平方米的平均建筑費用為400元.
(1)為了使該球場每平方米的綜合費用最省(綜合費用是建筑費用與購地費用之和),公司應建幾座網球場?
(2)若球場每平方米的綜合費用不超過820元,最多建幾座網球場?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某種海洋生物身體的長度(單位:米)與生長年限t(單位:年)
滿足如下的函數關系:.(設該生物出生時t=0)
(1)需經過多少時間,該生物的身長超過8米;
(2)設出生后第年,該生物長得最快,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视