【題目】在①,②
,③
這三個條件中任選一個,補充在下面問題中,若問題中的三角形存在,求
的值;若問題中的三角形不存在,說明理由.
問題:是否存在,它的內角
的對邊分別為
,且
,
,________?
注:如果選擇多個條件分別解答,按第一個解答計分.
科目:高中數學 來源: 題型:
【題目】隨機調查某城市80名有子女在讀小學的成年人,以研究晚上八點至十點時間段輔導子女作業與性別的關系,得到下面的數據表:
是否輔導 性別 | 輔導 | 不輔導 | 合計 |
男 | 25 | 60 | |
女 | |||
合計 | 40 | 80 |
(1)請將表中數據補充完整;
(2)用樣本的頻率估計總體的概率,估計這個城市有子女在讀小學的成人女性晚上八點至十點輔導子女作業的概率;
(3)根據以上數據,能否有99%以上的把握認為“晚上八點至十點時間段是否輔導子女作業與性別有關?”.
參考公式:,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過軸正半軸上的動點
作曲線
:
的切線,切點為
,
,線段
的中點為
,設曲線
與
軸的交點為
.
(1)求的大小及
的軌跡方程;
(2)當動點到直線
的距離最小時,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為確定數學成績與玩手機之間的關系,從全校隨機抽樣調查了40名同學,其中40%的人玩手機.這40位同學的數學分數(百分制)的莖葉圖如圖所示.
數學成績不低于70分為良好,低于70分為一般.
(1)根據以上資料完成下面的列聯表,并判斷有多大把握認為“數學成績良好與不玩手機有關系”.
良好 | 一般 | 總計 | |
不玩手機 | |||
玩手機 | |||
總計 | 40 |
(2)現將40名同學的數學成績分為如下5組:
,
,
,
,
.其頻率分布直方圖如圖所示.計算這40名同學數學成績的平均數,由莖葉圖得到的真實值記為
,由頻率分布直方圖得到的估計值記為
(同一組中的數據用該組區間的中點值作代表),求
與
的誤差值.
(3)從這40名同學數學成績高于90分的7人中隨機選取2人介紹學習方法,求這2保不玩手機的人數的分布列和數學期望.
附:,這40名同學的數學成績總和為2998分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程。
已知曲線C:
(t為參數), C
:
(
為參數)。
(1)化C,C
的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C上的點P對應的參數為
,Q為C
上的動點,求
中點
到直線
(t為參數)距離的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節目的收視時間情況,隨機抽取了某市名觀眾進行調查,其中有
名男觀眾和
名女觀眾,將這
名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在
分鐘以上(包括
分鐘)的稱為“朗讀愛好者”,收視時間在
分鐘以下(不包括
分鐘)的稱為“非朗讀愛好者”.
(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這
名觀眾中任選
名,求至少選到
名“朗讀愛好者”的概率;
(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,
為坐標原點,過點
的直線
與
交于
、
兩點.
(1)若直線與圓
相切,求直線
的方程;
(2)若直線與
軸的交點為
,且
,
,試探究:
是否為定值.若為定值,求出該定值,若不為定值,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是數列
的前
項和,對任意
都有
成立(其中
是常數).
(1)當時,求
:
(2)當時,
①若,求數列
的通項公式:
②設數列中任意(不同)兩項之和仍是該數列中的一項,則稱該數列是“
數列”,如果
,試問:是否存在數列
為“
數列”,使得對任意
,都有
,且
,若存在,求數列
的首項
的所有取值構成的集合;若不存在.說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com