【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,且a>b,a>c.△ABC的外接圓半徑為1, ,若邊BC上一點D滿足BD=2DC,且∠BAD=90°,則△ABC的面積為 .
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0 , 2 )(x0>
)是拋物線C上一點.圓M與線段MF相交于點A,且被直線x=
截得的弦長為
|MA|.若
=2,則|AF|等于( )
A.
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某居民小區戶主人數和戶主對戶型結構的滿意率分別如圖1和圖2所示,為了解該小區戶主對戶型結構的滿意程度,用分層抽樣的方法抽取20%的戶主進行調查,則樣本容量和抽取的戶主對四居室滿意的人數分別為( )
A.100,8
B.80,20
C.100,20
D.80,8
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓C: +
=1(a>b>0)的左、右焦點分別為F1、F2 , 上頂點為A,過A與AF2垂直的直線交x軸負半軸于Q點,且F1恰好是線段QF2的中點.
(1)若過A、Q、F2三點的圓恰好與直線3x﹣4y﹣7=0相切,求橢圓C的方程;
(2)在(1)的條件下,B是橢圓C的左頂點,過點R( ,0)作與x軸不重合的直線l交橢圓C于E、F兩點,直線BE、BF分別交直線x=
于M、N兩點,若直線MR、NR的斜率分別為k1 , k2 , 試問:k1k2是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x+ax2+bcosx在點 處的切線方程為
.
(Ⅰ)求a,b的值,并討論f(x)在 上的增減性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求證: .
(參考公式: )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B.
(I)求角A;
(Ⅱ)若a=4 ,b+c=8,求△ABC 的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在三棱錐P﹣ABC中,VP﹣ABC= ,∠APC=
,∠BPC=
,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P﹣ABC外接球的體積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com