精英家教網 > 高中數學 > 題目詳情

【題目】設y=f(t)是某港口水的深度y(米)關于時間t(時)的函數,其中0≤t≤24.下表是該港口某一天從0時至24時記錄的時間t與水深y的關系表:

t

0

3

6

9

12

15

18

21

24

y

5

7.5

5

2.5

5

7.5

5

2.5

5

經長期觀察,函數y=f(t)的圖象可以近似地看成函數y=k+Asin(ωt+φ)的圖象.下面的函數中,最能近似表示表中數據間對應關系的函數是( )
A.
B.
C.
D.

【答案】C
【解析】解:由表格可得:函數的最大值是7.5、最小值是2.5,

則A= = ,k= =5,

且T=15﹣3=12,又ω>0,則 ,解得ω= ,

則函數f(t)=5+ sin( t+),

因為函數圖象過點(0,5),

所以5+ sin=5,則sin=0,即=kπ(k∈Z),

又函數圖象過點(3,7.5),

所以5+ sin( +)=7.5,則sin( +)=1,

=0,

所以 ,

故答案為:C.

由表格求出函數的最值和周期,再求出A、K的值,由三角函數的周期公式求出ω的值,將特殊點代入解析式列出方程求出φ,可求出解析式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數f(x)=x2 在其定義域內的一個子區間(k﹣1,k+1)內不是單調函數,則實數k的取值范圍( )
A.[1,+∞)
B.[1,
C.[1,+2)
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E為PD中點.

(1)求證:PB∥平面ACE;
(2)求二面角E﹣AC﹣D的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:a∈R,且a>0,a+ ≥2,命題q:x0∈R,sinx0+cosx0= ,則下列判斷正確的是(
A.p是假命題
B.q是真命題
C.(¬q)是真命題
D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 有兩個零點.
(1)若函數的兩個零點是 ,求 的值;
(2)若函數的兩個零點是 ,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題正確的有( ) (1.)很小的實數可以構成集合;
(2.)集合{y|y=x2﹣1}與集合{(x,y)|y=x2﹣1}是同一個集合;
(3.) 這些數組成的集合有5個元素;
(4.)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限內的點集.
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x),φ(x)滿足關系φ(x)=f(x)f(x+α)(其中α是常數).
(1)如果α=1,f(x)=2x﹣1,求函數φ(x)的值域;
(2)如果α= ,f(x)=sinx,且對任意x∈R,存在x1 , x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,求|x1﹣x2|的最小值;
(3)如果f(x)=Asin(ωx+)(A>0,ω>0),求函數φ(x)的最小正周期(只需寫出結論).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了得到函數y=cos(x+ )的圖象,只需把余弦曲線y=cosx上的所有的點( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線y2=4x的焦點為F,直線l過F且依次交拋物線及圓(x﹣1)2+y2= 于點A,B,C,D四點,則9|AB|+4|CD|的最小值為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视