【題目】《九章算術》卷第五《商功》中,有“賈令芻童,上廣一尺,袤二尺,下廣三尺,袤四尺,高一尺。”,意思是:“假設一個芻童,上底面寬1尺,長2尺;下底面寬3尺,長4尺,高1尺(如圖)。”(注:芻童為上下底面為相互平行的不相似長方形,兩底面的中心連線與底面垂直的幾何體),若該幾何體所有頂點在一球體的表面上,則該球體的表面積為( )
A. 平方尺 B.
平方尺 C.
平方尺 D.
平方尺
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A.對具有線性相關關系的變量有一組觀測數據
,其線性回歸方程是
,且
,則實數
的值是
B.正態分布在區間
和
上取值的概率相等
C.若兩個隨機變量的線性相關性越強,則相關系數的值越接近于1
D.若一組數據的平均數是2,則這組數據的眾數和中位數都是2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系內,已知點,圓
的方程為
,點
是圓
上任意一點,線段
的垂直平分線
和直線
相交于點
.
(1)當點在圓上運動時,求點
的軌跡方程;
(2)過點能否作一條直線
,與點
的軌跡交于
兩點,且點
為線段
的中點?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長為
的菱形,
,點
是棱
的中點,
,點
在平面
的射影為
,
為棱
上一點,
(Ⅰ)求證:平面平面
;
(Ⅱ)若為棱
的中點,
,求直線
與平面
所成角的正弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系(
),點
為曲線
上的動點,點
在線段
的延長線上,且滿足
,點
的軌跡為
。
(Ⅰ)求的極坐標方程;
(Ⅱ)設點的極坐標為
,求
面積的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明口袋中有3張10元,3張20元(因紙幣有編號認定每張紙幣不同),現從中掏出紙幣超過45元的方法有_______種;若小明每次掏出紙幣的概率是等可能的,不放回地掏出4張,剛好是50元的概率為_______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com