精英家教網 > 高中數學 > 題目詳情

【題目】我們聽到的美妙弦樂,不是一個音在響,而是許多個純音的合成,稱為復合音.復合音的響度是各個純音響度之和.琴弦在全段振動,產生頻率為的純音的同時,其二分之一部分也在振動,振幅為全段的,頻率為全段的2倍;其三分之一部分也在振動,振幅為全段的,頻率為全段的3倍;其四分之一部分也在振動,振幅為全段的,頻率為全段的4倍;之后部分均忽略不計.已知全段純音響度的數學模型是函數為時間,為響度),則復合音響度數學模型的最小正周期是_____________.

【答案】

【解析】

首先根據題意,寫出復合音響度數學模型為,結合多個周期函數進行加減運算之后的周期的特征得到結果.

因為產生頻率為的純音的同時,

其二分之一部分也在振動,振幅為全段的,頻率為全段的2倍;

其三分之一部分也在振動,振幅為全段的,頻率為全段的3倍;

其四分之一部分也在振動,振幅為全段的,頻率為全段的4倍;

由全段純音響度的數學模型是函數為時間,為響度),

可得復合音響度數學模型為,

因為的周期,

的周期,

的周期為

的最小公倍數為,

所以的周期為,

故答案為:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標準如下:4小時內(含4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(含24小時)收費30元;超過24小時,按前述標準重新計費.上述標準不足一小時的按一小時計費.為了調查該停車場一天的收費情況,現統計1000輛車的停留時間(假設每輛車一天內在該停車場僅停車一次),得到下面的頻數分布表:

(小時)

頻數(車次)

100

100

200

200

350

50

以車輛在停車場停留時間位于各區間的頻率代替車輛在停車場停留時間位于各區間的概率.

1)現在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調研,記錄并統計了停車時長與司機性別的列聯表:

合計

不超過6小時

30

6小時以上

20

合計

100

完成上述列聯表,并判斷能否有90%的把握認為“停車是否超過6小時”與性別有關?

2)(i表示某輛車一天之內(含一天)在該停車場停車一次所交費用,求的概率分布列及期望;

ii)現隨機抽取該停車場內停放的3輛車,表示3輛車中停車費用大于的車輛數,求的概率.

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,若橢圓的長軸長等于的直徑,且,成等差數列

(Ⅰ)求橢圓的方程;

(Ⅱ)設、是橢圓上不同的兩點,線段的垂直平分線軸于點,試求點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學自制了一套數學實驗模型,該模型三視圖如圖所示.模型內置一個與其各個面都相切的球,該模型及其內球在同一方向有開口裝置.實驗的時候,隨機往模型中投擲大小相等,形狀相同的玻璃球,通過計算落在球內的玻璃球數量,來估算圓周率的近似值.已知某次實驗中,某同學一次投擲了個玻璃球,請你估算落在球內的玻璃球數量(其中)( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4—4:坐標系與參數方程]

以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數方程是 (t為參數),圓C的極坐標方程是ρ=4cos θ,求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)證明:當時,恒成立;

(2)若函數上只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】網購已經成為我們日常生活中的一部分,某地區隨機調查了100名男性和100名女性在雙十一活動中用于網購的消費金額,數據整理如下:

男性消費金額頻數分布表

消費金額

(單位:元)

0~500

500~1000

1000~1500

1500~2000

2000~3000

人數

15

15

20

30

20

1)試分別計算男性、女性在此活動中的平均消費金額;

2)如果分別把男性、女性消費金額與中位數相差不超過200元的消費稱作理性消費,試問是否有5成以上的把握認為理性消費與性別有關.

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某社區組織“學習強國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1,第2,第3,第4,第5,第6,得到如圖所示的頻率分布直方圖.現采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數依次為(

A.1,34B.2,3,3C.2,2,4D.1,1,6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數據的收集和整理在當今社會起到了舉足輕重的作用,它用統計的方法來幫助人們分析以往的行為習慣,進而指導人們接下來的行動.

某支足球隊的主教練打算從預備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場比賽的傳球成功次數,如下表:

場次

第一場

第二場

第三場

第四場

第五場

28

33

36

38

45

39

31

43

39

33

1)根據這兩名球員近期5場比賽的傳球成功次數,完成莖葉圖(莖表示十位,葉表示個位);分別在平面直角坐標系中畫出兩名球員的傳球成功次數的散點圖;

2)求出甲、乙兩名球員近期5場比賽的傳球成功次數的平均值和方差;

3)主教練根據球員每場比賽的傳球成功次數分析出球員在場上的積極程度和技術水平,同時根據多場比賽的數據也可以分析出球員的狀態和潛力.你認為主教練應選哪位球員?并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视