精英家教網 > 高中數學 > 題目詳情

【題目】f(x),g(x)分別是定義在R上的奇函數和偶函數,當x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,0)∪(0,3)

【答案】A
【解析】解:令h(x)=f(x)g(x),則h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函數h(x)在R上是奇函數. ①∵當x<0時,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0時單調遞增,
故函數h(x)在R上單調遞增.
∵h(﹣3)=f(﹣3)g(﹣3)=0,
∴h(x)=f(x)g(x)<0=h(﹣3),
∴x<﹣3.
②當x>0時,函數h(x)在R上是奇函數,可知:h(x)在(0,+∞)上單調遞增,且h(3)=﹣h(﹣3)=0,
∴h(x)<0,的解集為(0,3).
∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).
故選:A
【考點精析】認真審題,首先需要了解函數奇偶性的性質(在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇),還要掌握利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若關于x的不等式ax2+bx+c<0的解集為({﹣∞,﹣1})∪( ,+∞),則不等式cx2﹣bx+a<0的解集為(
A.(﹣1,2)
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,1)
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若正實數a,b滿足a+b=1,則(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是公比不為1的等比數列,a1=1,且a1 , a3 , a2成等差數列.
(1)求數列{an}的通項;
(2)若數列{an}的前n項和為Sn , 試求Sn的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)= 恰有2個零點,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)為R上的偶函數,g(x)為R上的奇函數,且f(x)+g(x)=log4(4x+1).
(1)求f(x),g(x)的解析式;
(2)若函數h(x)=f(x)﹣ 在R上只有一個零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數,且在區間(﹣∞,0)上單調遞減,若實數a滿足f(3|2a+1|)>f(﹣ ),則a的取值范圍是(
A.(﹣∞,﹣ )∪(﹣ ,+∞)
B.(﹣∞,﹣
C.(﹣ ,+∞)
D.(﹣ ,﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
(1)若PA=AB,求PB與平面PDC所成角的正弦值;
(2)當平面PBC與平面PDC垂直時,求PA的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=Asin(ωx+φ)(A>0,ω>0,﹣ <φ< ,x∈R)的部分圖象如圖所示.
(Ⅰ)求函數y=f(x)的解析式;
(Ⅱ)將函數y=f(x)的圖象沿x軸方向向右平移 個單位長度,再把橫坐標縮短到原來的 (縱坐標不變),得到函數y=g(x)的圖象,當x∈[﹣ , ]時,求函數g(x)的值域.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视