精英家教網 > 高中數學 > 題目詳情

【題目】為改善居民的生活環境,政府擬將一公園進行改造擴建.已知原公園是直徑為200 m的半圓形,出入口在圓心O處,A為居民小區,OA的距離為200 m,按照設計要求,以居民小區A和圓弧上點B的連線為一條邊向半圓外作等腰直角三角形ABCC為直角頂點),使改造后的公園如圖中四邊形OACB所示.

1)若,則C與出入口O之間的距離為多少米?

2的大小為多少時,公園OACB的面積最大?

【答案】(1);(2

【解析】

(1)當時,設,在中可表示,進而可表示,則在中利用余弦定理即可得結果;

(2)設,利用余弦定理得到以三角形的面積公式得到關于的面積表達式,結合三角函數求最值.

1)設,由題可知.,,

,,.

中,.

,則.

C與出入口O之間的距離為.

2)設,則

,

,

∴當,即時,公園OACB的面積最大為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】籃球場上有5個人在練球,其戰術是由甲開始發球(第1次傳球),經過6次傳球跑動后(中途每人的傳接球機會均等),回到甲,由甲投3分球,其不同的傳球方式有( )種.

A. 4 100 B. 1 024 C. 976 D. 820

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查一款電視機的使用時間,研究人員對該款電視機進行了相應的測試,將得到的數據統計如下圖所示:

并對不同年齡層的市民對這款電視機的購買意愿作出調查,得到的數據如下表所示:

(1)根據圖中的數據,試估計該款電視機的平均使用時間;

(2)根據表中數據,判斷是否有99.9%的把握認為“愿意購買該款電視機”與“市民的年齡”有關;

(3)若按照電視機的使用時間進行分層抽樣,從使用時間在[0,4)和[4,20]的電視機中抽取5臺,再從這5臺中隨機抽取2臺進行配件檢測,求被抽取的2臺電視機的使用時間都在[4,20]內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖放置的邊長為1的正方形沿軸順時針滾動一周,設頂點的運動軌跡與軸所圍區域為,若在平面區域內任意取一點,則所取的點恰好落在區域內部的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為坐標原點,橢圓的焦距為,直線截圓與橢圓所得的弦長之比為,圓、橢圓軸正半軸的交點分別為.

(1)求橢圓的標準方程;

(2)設點)為橢圓上一點,點關于軸的對稱點為,直線,分別交軸于點,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

1)討論函數的單調性;

2)當時,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經營了來自中國的小龍蝦,這些小龍蝦標有等級代碼.為得到小龍蝦等級代碼數值與銷售單價之間的關系,經統計得到如下數據:

等級代碼數值

38

48

58

68

78

88

銷售單價(元

16.8

18.8

20.8

22.8

24

25.8

(1)已知銷售單價與等級代碼數值之間存在線性相關關系,求關于的線性回歸方程(系數精確到0.1);

(2)若莫斯科某餐廳銷售的中國小龍蝦的等級代碼數值為98,請估計該等級的中國小龍蝦銷售單價為多少元?

參考公式:對一組數據,,····,其回歸直線的斜率和截距最小二乘估計分別為:,.

參考數據:,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設函數

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知向量,,設函數,且的圖象過點和點.

1)當時,求函數的最大值和最小值及相應的的值;

2)將函數的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數的圖象,若有兩個不同的解,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视