【題目】設為實數,函數
,
(1)若,求
的取值范圍;
(2)當時,試判斷函數
在
上的單調性,并證明.
科目:高中數學 來源: 題型:
【題目】某醫藥研究所開發一種新藥,在試驗藥效時發現:如果成人按規定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時間x(小時)之間滿足y=其對應曲線(如圖所示)過點
.
(1)試求藥量峰值(y的最大值)與達峰時間(y取最大值時對應的x值);
(2)如果每毫升血液中含藥量不少于1微克時治療疾病有效,那么成人按規定劑量服用該藥后一次能維持多長的有效時間(精確到0.01小時)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右點分別為
點
在橢圓上,且
(1)求橢圓的方程;
(2)過點(1,0)作斜率為的直線
交橢圓
于M、N兩點,若
求直線
的方程;
(3)點P、Q為橢圓上的兩個動點,為坐標原點,若直線
的斜率之積為
求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新高考最大的特點就是取消文理分科,除語文、數學、外語之外,從物理、化學、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構為了了解學生對全文(選擇政治、歷史、地理)的選擇是否與性別有關,從某學校高一年級的1000名學生中隨機抽取男生,女生各25人進行模擬選科.經統計,選擇全文的人數比不選全文的人數少10人.
(1)估計在男生中,選擇全文的概率.
(2)請完成下面的列聯表;并估計有多大把握認為選擇全文與性別有關,并說明理由;
選擇全文 | 不選擇全文 | 合計 | |
男生 | 5 | ||
女生 | |||
合計 |
附:,其中
.
P( | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某市為促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱.為調查居民生活垃圾分類投放情況,現隨機抽取了該市三類垃圾箱中總計1000t生活垃圾.經分揀以后數據統計如下表(單位:):根據樣本估計本市生活垃圾投放情況,下列說法錯誤的是( )
廚余垃圾”箱 | 可回收物”箱 | 其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
A.廚余垃圾投放正確的概率為
B.居民生活垃圾投放錯誤的概率為
C.該市三類垃圾箱中投放正確的概率最高的是“可回收物”箱
D.廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差為20000
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在路邊安裝路燈:路寬米,燈桿長
米,且與燈柱
成120°角,路燈采用錐形燈罩,燈罩軸線
與燈桿垂直且正好通過道路路面的中線.
(1)求燈柱高的長度(精確到0.01米);
(2)若該路燈投射出的光成一個圓錐體,該圓錐體母線與軸線的夾角是30°,寫出路燈在路面上投射出的截面圖形的邊界是什么曲線?寫出其相應的幾何量(精確到0.01米).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
),數列
滿足
,
,數列
滿足
.
(1)求證:數列是等差數列;
(2)設數列滿足
(
),且
中任意連續三項均能構成一個三角形的三邊長,求
的取值范圍;
(3)設數列滿足
(
),求
的前
項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的上頂點為A,以A為圓心,橢圓的長半軸為半徑的圓與y軸的交點分別為
、
.
(1)求橢圓的方程;
(2)設不經過點A的直線與橢圓
交于P、Q兩點,且
,試探究直線
是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com