精英家教網 > 高中數學 > 題目詳情

【題目】直線l過P(1,2),且A(2,3),B(4,﹣5)到l的距離相等,則直線l的方程是(
A.4x+y﹣6=0
B.x+4y﹣6=0
C.3x+2y﹣7=0或4x+y﹣6=0
D.2x+3y﹣7=0或x+4y﹣6=0

【答案】C
【解析】解 設所求直線為l,由條件可知直線l平行于直線AB或過線段AB的中點,(1)AB的斜率為 =﹣4,當直線l∥AB時,l的方程是y﹣2=﹣4(x﹣1),即 4x+y﹣6=0.(2)當直線l經過線段AB的中點(3,﹣1)時,l的斜率為 = ,l的方程是 y﹣2= (x﹣1),即3x+2y﹣7=0.故所求直線的方程為3x+2y﹣7=0或4x+y﹣6=0. 故選C.
【考點精析】關于本題考查的一般式方程,需要了解直線的一般式方程:關于的二元一次方程(A,B不同時為0)才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】動點P滿足 + =2
(1)求動點P的軌跡F1 , F2的方程;
(2)設直線l與曲線C交于A,B兩點,坐標原點O到直線l的距離為 ,求△OAB面 積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;

(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.

參考公式: ,其中.

參考數據:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)當a>1時,求證:函數f(x)在(0,+∞)上單調遞增;
(Ⅱ)若函數y=|f(x)﹣t|﹣1有三個零點,求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,試求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處有極值10.

1)求實數的值;

2)設,討論函數在區間上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場預計全年分批購入每臺價值2000元的電視機共3600臺,每批購入的臺數相同,且每批均須付運費400元,儲存購入的電視機全年所付保管費與每批購入電視機的總價值(不含運費)成正比.若每批購入400臺,則全年需用去運費和保管費43600元.現在全年只有24000元可用于支付運費和保管費,請問能否恰當安排每批進貨的數量,使這24000元的資金夠用?寫出你的結論,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列四個函數中,在(0,1)上為增函數的是(
A.y=﹣log2x
B.y=sinx
C.
D.y=arccosx

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解關于x的不等式:(ax﹣1)(x﹣1)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ﹣2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數f(x)的極值點,并說明理由;
(Ⅱ)若存在m∈[﹣4,﹣1),使得定義在[1,t]上的函數g(x)=f(x)﹣ln(x+1)+x3在x=1處取得最大值,求實數t的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视