【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?
(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;
(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式: ,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)能在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關;
(2)(i)經常使用共享單車的有3人,偶爾或不用共享單車的有2人.(ii)
【解析】試題分析:
(1)由列聯表可得,所以能在犯錯誤的概率不超過0.15的前提下認為
市使用共享單車情況與年齡有關.
(2)(i)依題意可知,經常使用共享單車的有(人),偶爾或不用共享單車的有
(人).
(ii)由題意列出所有可能的結果,結合古典概型公式和對立事件公式可得選出的2人中至少有1人經常使用共享單車的概率.
試題解析:
(1)由列聯表可知,
.
因為,
所以能在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關.
(2)(i)依題意可知,所抽取的5名30歲以上的網友中,經常使用共享單車的有(人),偶爾或不用共享單車的有
(人).
(ii)設這5人中,經常使用共享單車的3人分別為,
,
;偶爾或不用共享單車的2人分別為
,
.
則從5人中選出2人的所有可能結果為,
,
,
,
,
,
,
,
,
共10種.
其中沒有1人經常使用共享單車的可能結果為共1種,
故選出的2人中至少有1人經常使用共享單車的概率.
科目:高中數學 來源: 題型:
【題目】已知二次函數,關于實數
的不等式
的解集為
.
(1)當時,解關于
的不等式:
;
(2)是否存在實數,使得關于
的函數
(
)的最小值為
?若存在,求實數
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的奇函數f(x),當x>0時,f(x)=﹣x2+2x (Ⅰ)求函數f(x)在R上的解析式;
(Ⅱ)若函數f(x)在區間[﹣1,a﹣2]上單調遞增,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內每個技工加工的合格零件數的統計數據的莖葉圖如圖所示.已知兩組技工在單位時間內加工的合格零件平均數都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內加工的合格零件的方差 和
,并由此分析兩組技工的加工水平.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+3x2﹣9x+m
(1)求函數f(x)=x3+3x2﹣9x+m的單調遞增區間;
(2)若函數f(x)在區間[0,2]上的最大值12,求函數f(x)在該區間上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線l過P(1,2),且A(2,3),B(4,﹣5)到l的距離相等,則直線l的方程是( )
A.4x+y﹣6=0
B.x+4y﹣6=0
C.3x+2y﹣7=0或4x+y﹣6=0
D.2x+3y﹣7=0或x+4y﹣6=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2﹣y2=1;
②y=x2﹣|x|;
③y=3sinx+4cosx;
④|x|+1=
對應的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com