【題目】已知函數,
.
(1)求函數的單調區間;
(2)若關于的方程
有實數根,求實數
的取值范圍.
【答案】(1)單調遞增區間為,單調遞減區間為
;(2)
.
【解析】試題分析:
(1)結合函數的解析式可得,
,結合導函數與原函數的單調性的關系可得函數
的單調遞增區間為
,單調遞減區間為
.
(2)原問題等價于方程有實數根,構造函數
,利用導函數研究函數存在零點的充要條件可得:當
時,方程
有實數根.
試題解析:
(1)依題意,得,
.
令,即
,解得
;
令,即
,解得
,
故函數的單調遞增區間為
,單調遞減區間為
.
(2)由題得,
.
依題意,方程有實數根,
即函數存在零點,
又,
令,得
.
當時,
,即函數
在區間
上單調遞減,
而,
,
所以函數存在零點;
當時,
,
隨
的變化情況如表:
|
|
|
|
| 極小值 |
所以為函數
的極小值,也是最小值.
當,即
時,函數
沒有零點;
當,即
時,注意到
,
,
所以函數存在零點.
綜上所述,當時,方程
有實數根.
科目:高中數學 來源: 題型:
【題目】某個實心零部件的形狀是如圖所示的幾何體,其下部是底面均是正方形,側面是全等的等腰梯形的四棱臺A1B1C1D1﹣ABCD,其上是一個底面與四棱臺的上底面重合,側面是全等的矩形的四棱柱ABCD﹣A2B2C2D2 .
(1)證明:直線B1D1⊥平面ACC2A2;
(2)現需要對該零部件表面進行防腐處理,已知AB=10,A1B1=20,AA2=30,AA1=13(單位:厘米),每平方厘米的加工處理費為0.20元,需加工處理費多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(cosα,sinα),
=(cosβ,sinβ),
=(﹣1,0).
(1)求向量 的長度的最大值;
(2)設α= ,且
⊥(
),求cosβ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?
(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;
(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式: ,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,其中
…是然對數底數.
(1)若函數有兩個不同的極值點
,
,求實數
的取值范圍;
(2)當時,求使不等式
在一切實數上恒成立的最大正整數
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)當a>1時,求證:函數f(x)在(0,+∞)上單調遞增;
(Ⅱ)若函數y=|f(x)﹣t|﹣1有三個零點,求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,試求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場預計全年分批購入每臺價值2000元的電視機共3600臺,每批購入的臺數相同,且每批均須付運費400元,儲存購入的電視機全年所付保管費與每批購入電視機的總價值(不含運費)成正比.若每批購入400臺,則全年需用去運費和保管費43600元.現在全年只有24000元可用于支付運費和保管費,請問能否恰當安排每批進貨的數量,使這24000元的資金夠用?寫出你的結論,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com