【題目】我校對高二600名學生進行了一次知識測試,并從中抽取了部分學生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
(1)填寫頻率分布表中的空格,補全頻率分布直方圖,并標出每個小矩形對應的縱軸數據;
分組 | 頻數 | 頻率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合計 | 1.00 |
如果用分層抽樣的方法從樣本分數在[60,70)和[80,90)的人中共抽取6人,再從6人中選2人,求2人分數都在[80,90)的概率.
【答案】(1)見解析.
(2).
【解析】
(1)先填寫完整頻率分布表,由此能補全頻率分布直方圖.
(2)由題意知樣本分數在有8人,樣本分數在
有16人,用分層抽樣的方法從樣本分數在
和
的人中共抽取6人,則抽取的分數在
)和
)的人數分別為2人和4人.記分數在
為
在
的為
.由此利用列舉法能求出2人分數都在
的概率.
填寫頻率分布表中的空格,如下表:
分 組 | 頻 數 | 頻 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.2 |
[80,90) | 16 | 0.32 |
[90,100] | 14 | 0.28 |
合 計 | 50 | 1.00 |
全頻率分布直方圖,如下圖:
(2)由題意知樣本分數在[60,70)有8人,樣本分數在[80,90)有16人,
用分層抽樣的方法從樣本分數在[60,70)和[80,90)的人中共抽取6人,
則抽取的分數在[60,70)和[80,90)的人數分別為2人和4人.
記分數在[60,70)的為a1,a2,在[80,90)的為b1,b2,b3,b4.
從已抽取的6人中任選兩人的所有可能結果有15種,分別為{a1,a2},{a1,b1},{a1,b2},{a1,b3},{a1,b4},{a2,b1},{a2,b2},{a2,b3},{a2,b4},{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4},
設“2人分數都在[80,90)”為事件A,
則事件A包括{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4}共6種,所以P(A)=.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn滿足2Sn=3an﹣1,其中n∈N* .
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設anbn= ,求數列{bn}的前n項和為Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,F1 , F2分別為橢圓 +
=1(a>b>0)的左、右焦點,頂點B的坐標為(0,b),連接BF2并延長交橢圓于點A,過點A作x軸的垂線交橢圓于另一點C,連接F1C.
(1)若點C的坐標為( ,
),且BF2=
,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的取值范圍是( )
A.
B.k<0或
C.
D.或
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O為坐標原點,F是橢圓C: (a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經過OE的中點,則C的離心率為( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com